Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 70
Filter
1.
EMBO J ; 2024 May 07.
Article in English | MEDLINE | ID: mdl-38714893

ABSTRACT

The 16-subunit Constitutive Centromere-associated Network (CCAN)-based inner kinetochore is well-known for connecting centromeric chromatin to the spindle-binding outer kinetochore. Here, we report a non-canonical role for the inner kinetochore in directly regulating sister-chromatid cohesion at centromeres. We provide biochemical, X-ray crystal structure, and intracellular ectopic localization evidence that the inner kinetochore directly binds cohesin, a ring-shaped multi-subunit complex that holds sister chromatids together from S-phase until anaphase onset. This interaction is mediated by binding of the 5-subunit CENP-OPQUR sub-complex of CCAN to the Scc1-SA2 sub-complex of cohesin. Mutation in the CENP-U subunit of the CENP-OPQUR complex that abolishes its binding to the composite interface between Scc1 and SA2 weakens centromeric cohesion, leading to premature separation of sister chromatids during delayed metaphase. We further show that CENP-U competes with the cohesin release factor Wapl for binding the interface of Scc1-SA2, and that the cohesion-protecting role for CENP-U can be bypassed by depleting Wapl. Taken together, this study reveals an inner kinetochore-bound pool of cohesin, which strengthens centromeric sister-chromatid cohesion to resist metaphase spindle pulling forces.

2.
J Appl Crystallogr ; 57(Pt 2): 380-391, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38596742

ABSTRACT

A multi-slit very small angle neutron scattering (MS-VSANS) instrument has been finally accepted at the China Spallation Neutron Source (CSNS). It is the first spallation neutron source based VSANS instrument. MS-VSANS has a good signal-to-noise ratio and can cover a wide scattering vector magnitude range from 0.00028 to 1.4 Å-1. In its primary flight path, a combined curved multichannel beam bender and sections of rotary exchange drums are installed to minimize the background downstream of the instrument. An exchangeable multi-slit beam focusing system is integrated into the primary flight path, enabling access to a minimum scattering vector magnitude of 0.00028 Å-1. MS-VSANS has three modes, namely conventional SANS, polarizing SANS and VSANS modes. In the SANS mode, three motorized high-efficiency 3He tube detectors inside the detector tank cover scattering angles from 0.12 to 35° simultaneously. In the polarizing SANS mode, a double-V cavity provides highly polarized neutrons and a high-efficiency 3He polarization analyser allows full polarization analysis. In the VSANS mode, an innovative high-resolution gas electron multiplier detector covers scattering angles from 0.016 to 0.447°. The absolute scattering intensities of a selection of standard samples are obtained using the direct-beam technique; the effectiveness of this method is verified by testing the standard samples and comparing the results with those from a benchmark instrument. The MS-VSANS instrument is designed to be flexible and versatile and all the design goals have been achieved.

3.
Huan Jing Ke Xue ; 45(3): 1448-1456, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471860

ABSTRACT

Microplastics, as an emerging pollutant, have garnered global attention. Urban areas are key hotspots for the generation of microplastic pollution, whereas urban water bodies act as vital conduits for the dissemination of microplastics to other freshwater environments. In this study, the Dongshan Canal in the urban area of Yichang City was selected as the research subject. Through field sampling, microscopic observation, and Fourier infrared spectroscopy analysis conducted in July and October 2022, the occurrence characteristics and potential pollution sources of microplastics in the water body of the Dongshan Canal were identified and analyzed. The ecological risk and annual emission volume of microplastics in the water body were quantitatively assessed using the risk index (H), pollution load index (PLI) model, and proportional flow method. The results indicated that the average abundances of microplastics in the surface water of the Dongshan Canal were (7 295±1 051) n·m-3 (July) and (5 145±762.6) n·m-3 (October). Fibrous microplastics (27.63%-63.23%), microplastics with a size of <0.5 mm (75.68%-96.2%), and colored microplastics (22.73%-61.83%) dominated the samples, with PE (30.1%) and PET (26.33%) being the predominant materials. The assessment results from the two models classified the ecological risk index of the Dongshan Canal as class Ⅲ, whereas the overall pollution load fell into class I, with certain sampling points reaching class Ⅱ. Estimates revealed that the Dongshan Canal transports approximately 3.37 t of microplastics to the Yangtze River annually. Overall, the microplastic pollution level in the Dongshan Canal of Yichang City could be considered moderate, with potential sources of pollution including laundry wastewater, personal care products, and plastic waste.

4.
Huan Jing Ke Xue ; 45(3): 1849-1858, 2024 Mar 08.
Article in Chinese | MEDLINE | ID: mdl-38471896

ABSTRACT

Microplastic pollution poses threats to aquatic ecosystems and human health. In this study, in order to investigate the characteristics of microplastic occurrence in different environmental media, the abundance, particle size, shape, color, and composition types of microplastics in the water column, sediment, riparian zone soil, and the benthic snail Bellamya aeruginosa of the Manao River were analyzed using field sampling, microscopic observation, and Fourier infrared spectroscopy. The results showed that the average abundance of microplastics in the surface water of the Manao River was (5.9±0.26) n·L-1; the abundance of microplastics in the upper sediment (by dry weight) was (1.35±0.1) n·g-1, and that in the lower sediment (by dry weight) was (0.93±0.12) n·g-1. The abundance of microplastics in the near riparian zone soil (by dry weight) was (0.68±0.16) n·g-1, and that in the far riparian zone soil (by dry weight) was (0.69±0.14) n·g-1, and the abundance of microplastics in the B. aeruginosa was (2.06±0.25) n·g-1. The analysis results showed that the abundance of microplastics in the upper and lower sediments were positively correlated; the abundance of microplastics in B. aeruginosa was positively correlated with the abundance of microplastics in the upper and lower sediments, respectively; and the abundance of microplastics in the near and far riparian zone soils were also correlated. Most of the microplastics within each environmental medium and B. aeruginosa were <0.1 mm in size, mainly in the form of fibers and fragments, mainly blue and black in color, and mainly composed of polypropylene (PP) and polyethylene (PE). It was found that microplastics in riparian zone soils mainly originated from the fragmentation and decomposition of agricultural plastic films. The results of this study shed light on the accumulation of microplastics in macrobenthic organisms through the investigation of microplastics in multi-environmental media and in the B. aeruginosa, which helps us to understand the potential ecological risk of microplastics in a comprehensive manner.


Subject(s)
Microplastics , Water Pollutants, Chemical , Humans , Plastics , Pseudomonas aeruginosa , Rivers , Ecosystem , Water Pollutants, Chemical/analysis , Environmental Monitoring , Geologic Sediments/chemistry , Water , Soil
5.
Adv Sci (Weinh) ; 11(14): e2308258, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38291813

ABSTRACT

Increasing the charging cut-off voltage (e.g., 4.6 V) to extract more Li ions are pushing the LiCoO2 (LCO) cathode to achieve a higher energy density. However, an inhomogeneous cycled bulk-to-surface Li distribution, which is closely associated with the enhanced extracted Li ions, is usually ignored, and severely restricts the design of long lifespan high voltage LCO. Here, a strategy by constructing an artificial solid-solid Li diffusion environment on LCO's surface is proposed to achieve a homogeneous bulk-to-surface Li distribution upon cycling. The diffusion optimized LCO not only shows a highly reversible capacity of 212 mA h g-1 but also an ultrahigh capacity retention of 80% over 600 cycles at 4.6 V. Combined in situ X-ray diffraction measurements and stress-evolution simulation analysis, it is revealed that the superior 4.6 V long-cycled stability is ascribed to a reduced structure stress leaded by the homogeneous bulk-to-surface Li diffusion. This work broadens approaches for the design of highly stable layered oxide cathodes with low ion-storage structure stress.

6.
ACS Appl Mater Interfaces ; 16(1): 1757-1766, 2024 Jan 10.
Article in English | MEDLINE | ID: mdl-38155532

ABSTRACT

Increasing the charging cutoff voltage is a viable approach to push the energy density limits of LiCoO2 and meet the requirements of the rapid development of 3C electronics. However, an irreversible oxygen redox is readily triggered by the high charging voltage, which severely restricts practical applications of high-voltage LiCoO2. In this study, we propose a modification strategy via suppressing surface ligand-to-metal charge transfer to inhibit the oxygen redox-induced structure instability. A d0 electronic structure Zr4+ is selected as the charge transfer insulator and successfully doped into the surface lattice of LiCoO2. Using a combination of theoretical calculations, ex situ X-ray absorption spectra, and in situ differential electrochemical mass spectrometry analysis, our results show that the modified LiCoO2 exhibits suppressed oxygen redox activity and stable redox electrochemistry. As a result, it demonstrates a robust long-cycle lattice structure with a practically eliminated voltage decay (0.17 mV/cycle) and an excellent capacity retention of 89.4% after 100 cycles at 4.6 V. More broadly, this work provides a new perspective on suppressing the oxygen redox activity through modulating surface ligand-to-metal charge transfer for achieving a stable high-voltage ion storage structure.

7.
J Asthma ; 60(11): 2052-2063, 2023 Nov.
Article in English | MEDLINE | ID: mdl-37289763

ABSTRACT

OBJECTIVE: Cuproptosis is the latest novel form of cell death. However, the relationship between asthma and cuproptosis is not fully understood. METHODS: In this study, we screened differentially expressed cuproptosis-related genes from the Gene Expression Omnibus (GEO) database and performed immune infiltration analysis. Subsequently, patients with asthma were typed and analyzed by Kyoto Encyclopedia of Genes and Genomes (KEGG). Weighted gene co-expression network analysis (WGCNA) was performed to calculate the module-trait correlations, and the hub genes of the intersection were taken to construct machine learning (XGB, SVM, RF, GLM). Finally, we used TGF-ß to establish a BEAS-2B asthma model to observe the expression levels of hub genes. RESULTS: Six cuproptosis-related genes were obtained. Immune-infiltration analysis shows that cuproptosis-related genes are associated with a variety of biological functions. We classified asthma patients into two subtypes based on the expression of cuproptosis-related genes and found significant Gene Ontology (GO) and immune function differences between the different subtypes. WGCNA selected 2 significant modules associated with disease features and typing. Finally, we identified TRIM25, DYSF, NCF4, ABTB1, CXCR1 as asthma biomarkers by taking the intersection of the hub genes of the 2 modules and constructing a 5-genes signature, which nomograph, decision curve analysis (DCA) and calibration curves, receiver operating characteristic curve (ROC) showed high efficiency in diagnosing the probability of survival of asthma patients. Finally, in vitro experiments have shown that DYSF and CXCR1 expression is up expressed in asthma. CONCLUSIONS: Our study provides further directions for studying the molecular mechanism of asthma.

8.
Proc Natl Acad Sci U S A ; 120(20): e2303479120, 2023 05 16.
Article in English | MEDLINE | ID: mdl-37155876

ABSTRACT

The human tumor suppressor Ring finger protein 20 (RNF20)-mediated histone H2B monoubiquitination (H2Bub) is essential for proper chromosome segregation and DNA repair. However, what is the precise function and mechanism of RNF20-H2Bub in chromosome segregation and how this pathway is activated to preserve genome stability remain unknown. Here, we show that the single-strand DNA-binding factor Replication protein A (RPA) interacts with RNF20 mainly in the S and G2/M phases and recruits RNF20 to mitotic centromeres in a centromeric R-loop-dependent manner. In parallel, RPA recruits RNF20 to chromosomal breaks upon DNA damage. Disruption of the RPA-RNF20 interaction or depletion of RNF20 increases mitotic lagging chromosomes and chromosome bridges and impairs BRCA1 and RAD51 loading and homologous recombination repair, leading to elevated chromosome breaks, genome instability, and sensitivities to DNA-damaging agents. Mechanistically, the RPA-RNF20 pathway promotes local H2Bub, H3K4 dimethylation, and subsequent SNF2H recruitment, ensuring proper Aurora B kinase activation at centromeres and efficient loading of repair proteins at DNA breaks. Thus, the RPA-RNF20-SNF2H cascade plays a broad role in preserving genome stability by coupling H2Bub to chromosome segregation and DNA repair.


Subject(s)
Recombinational DNA Repair , Replication Protein A , Humans , Chromatin , Chromosome Segregation , DNA Repair , Genomic Instability , Histones/genetics , Histones/metabolism , Homologous Recombination , Replication Protein A/genetics , Replication Protein A/metabolism
9.
Small ; 19(18): e2300419, 2023 May.
Article in English | MEDLINE | ID: mdl-36725302

ABSTRACT

All-Mn-based Li-rich cathodes Li2 MnO3 have attracted extensive attention because of their cost advantage and ultrahigh theoretical capacity. However, the unstable anionic redox reaction (ARR), which involves irreversible oxygen releases, causes declines in cycling capacity and intercalation potential, thus hindering their practical applications. Here, it is proposed that introducing stacking-fault defects into the Li2 MnO3 can localize oxygen lattice evolutions and stabilize the ARR, eliminating oxygen releases. The thus-made cathode has a highly reversible capacity (320 mA h g-1 ) and achieves excellent cycling stability. After 100 cycles, the capacity retention rate is 86% and the voltage decay is practically eliminated at 0.19 mV per cycle. Attributing to the stable ARR, samples show reduced stress-strain and phase transitions. Neutron pair distribution function (nPDF) measurements indicate that there is a structure response of localized oxygen lattice distortion to the ARR and the average oxygen lattice framework is well-preserved which is a prerequisite for the high cycle reversibility.

11.
Sci Rep ; 12(1): 16693, 2022 10 06.
Article in English | MEDLINE | ID: mdl-36202977

ABSTRACT

Lung cancer is one of the leading causes of cancer-related deaths worldwide, and non-small cell lung cancer (NSCLC) accounts for a large proportion of lung cancer cases, with few diagnostic and therapeutic targets currently available for NSCLC. This study aimed to identify specific biomarkers for NSCLC. We obtained three gene-expression profiles from the Gene Expression Omnibus database (GSE18842, GSE21933, and GSE32863) and screened for differentially expressed genes (DEGs) between NSCLC and normal lung tissue. Enrichment analyses were performed using Gene Ontology, Disease Ontology, and the Kyoto Encyclopedia of Genes and Genomes. Machine learning methods were used to identify the optimal diagnostic biomarkers for NSCLC using least absolute shrinkage and selection operator logistic regression, and support vector machine recursive feature elimination. CIBERSORT was used to assess immune cell infiltration in NSCLC and the correlation between biomarkers and immune cells. Finally, using western blot, small interfering RNA, Cholecystokinin-8, and transwell assays, the biological functions of biomarkers with high predictive value were validated. A total of 371 DEGs (165 up-regulated genes and 206 down-regulated genes) were identified, and enrichment analysis revealed that these DEGs might be linked to the development and progression of NSCLC. ABCA8, ADAMTS8, ASPA, CEP55, FHL1, PYCR1, RAMP3, and TPX2 genes were identified as novel diagnostic biomarkers for NSCLC. Monocytes were the most visible activated immune cells in NSCLC. The knockdown of the TPX2 gene, a biomarker with a high predictive value, inhibited A549 cell proliferation and migration. This study identified eight potential diagnostic biomarkers for NSCLC. Further, the TPX2 gene may be a therapeutic target for NSCLC.


Subject(s)
Carcinoma, Non-Small-Cell Lung , Lung Neoplasms , ADAMTS Proteins/genetics , Biomarkers , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/metabolism , Cell Cycle Proteins/metabolism , Cholecystokinin/metabolism , Gene Expression Regulation, Neoplastic , Humans , Intracellular Signaling Peptides and Proteins/metabolism , LIM Domain Proteins/metabolism , Lung Neoplasms/diagnosis , Lung Neoplasms/genetics , Lung Neoplasms/metabolism , Machine Learning , Muscle Proteins/metabolism , RNA, Small Interfering
12.
World J Surg Oncol ; 20(1): 275, 2022 Sep 01.
Article in English | MEDLINE | ID: mdl-36050740

ABSTRACT

BACKGROUND: Lung adenocarcinoma (LUAD) accounts for 50% of lung cancers, with high mortality and poor prognosis. Long non-coding RNA (lncRNA) plays a vital role in the progression of tumors. Cuproptosis is a newly discovered form of cell death that is highly investigated. Therefore, in the present study, we aimed to investigate the role of cuproptosis-related lncRNA signature in clinical prognosis prediction and immunotherapy and the relationship with drug sensitivity. MATERIAL AND METHODS: Genomic and clinical data were obtained from The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases, and cuproptosis-related genes were obtained from cuproptosis-related studies. The prognostic signature was constructed by co-expression analysis and Cox regression analysis. Patients were divided into high and low risk groups, and then, a further series of model validations were carried out to assess the prognostic value of the signature. Subsequently, lncRNAs were analyzed for gene ontology (GO), Kyoto Encyclopedia of Genes and Genomes Enrichment (KEGG), immune-related functions, and tumor mutation burden (TMB). Finally, we used tumor immune dysfunction and exclusion (TIDE) algorithms on immune escape and immunotherapy of cuproptosis-related lncRNAs, thereby identifying its sensitivity toward potential drugs for LUAD. RESULTS: A total of 16 cuproptosis-related lncRNAs were obtained, and a prognostic signature was developed. We found that high-risk patients had worse overall survival (OS) and progression-free survival (PFS) and higher mortality. Independent prognostic analyses, ROC, C-index, and nomogram showed that the cuproptosis-related lncRNAs can accurately predict the prognosis of patients. The nomogram and heatmap showed a distinct distribution of the high- and low-risk cuproptosis-related lncRNAs. Enrichment analysis showed that the biological functions of lncRNAs are associated with tumor development. We also found that immune-related functions, such as antiviral activity, were suppressed in high-risk patients who had mutations in oncogenes. OS was poorer in patients with high TMB. TIDE algorithms showed that high-risk patients have a greater potential for immune escape and less effective immunotherapy. CONCLUSION: To conclude, the 16 cuproptosis-related lncRNAs can accurately predict the prognosis of patients with LUAD and may provide new insights into clinical applications and immunotherapy.


Subject(s)
Adenocarcinoma of Lung , Apoptosis , Lung Neoplasms , RNA, Long Noncoding , Humans , Adenocarcinoma of Lung/genetics , Adenocarcinoma of Lung/immunology , Immunity , Kaplan-Meier Estimate , Lung Neoplasms/genetics , Lung Neoplasms/immunology , Prognosis , RNA, Long Noncoding/genetics , RNA, Long Noncoding/metabolism , Copper
13.
Small Methods ; 6(11): e2200740, 2022 Nov.
Article in English | MEDLINE | ID: mdl-36180397

ABSTRACT

Due to their accessible lattice oxygen redox (l-OR) at high voltages, Li-rich layered transition metal (TM) oxides have shown promising potential as candidate cathodes for high-energy-density Li-ion batteries. However, this l-OR process is also associated with unusual electrochemical issues such as voltage hysteresis and long-term voltage decay. The structure response mechanism to the l-OR behavior also remains unclear, hindering rational structure optimizations that would enable practical Li-rich cathodes. Here, this study reveals a strong coupling between l-OR and structure dynamic evolutions, as well as their effects on the electrochemical properties. Using the technique of neutron total scattering with pair distribution function analysis and small-angle neutron scattering, this study quantifies the local TM migration and formation of nanopores that accompany the l-OR. These experiments demonstrate the causal relationships among l-OR, the local/nanostructure evolutions, and the unusual electrochemistry. The TM migration triggered by the l-OR can change local oxygen coordination environments, which results in voltage hysteresis. Coupled with formed oxygen vacancies, it will accelerate the formation of nanopores, inducing a phase transition, and leading to irreversible capacity and long-cycling voltage fade.

14.
Cell Mol Immunol ; 19(9): 971-992, 2022 09.
Article in English | MEDLINE | ID: mdl-35970871

ABSTRACT

Pyroptosis is a form of programmed cell death mediated by gasdermin and is a product of continuous cell expansion until the cytomembrane ruptures, resulting in the release of cellular contents that can activate strong inflammatory and immune responses. Pyroptosis, an innate immune response, can be triggered by the activation of inflammasomes by various influencing factors. Activation of these inflammasomes can induce the maturation of caspase-1 or caspase-4/5/11, both of which cleave gasdermin D to release its N-terminal domain, which can bind membrane lipids and perforate the cell membrane. Here, we review the latest advancements in research on the mechanisms of pyroptosis, newly discovered influencing factors, antitumoral properties, and applications in various diseases. Moreover, this review also provides updates on potential targeted therapies for inflammation and cancers, methods for clinical prevention, and finally challenges and future directions in the field.


Subject(s)
Neoplasms , Pyroptosis , Caspases/metabolism , Humans , Inflammasomes/metabolism , Inflammation
15.
Sci Rep ; 12(1): 11210, 2022 07 01.
Article in English | MEDLINE | ID: mdl-35778595

ABSTRACT

Protein kinases that phosphorylate histones are ideally-placed to influence the behavior of chromosomes during cell division. Indeed, a number of conserved histone phosphorylation events occur prominently during mitosis and meiosis in most eukaryotes, including on histone H3 at threonine-3 (H3T3ph). At least two kinases, Haspin and VRK1 (NHK-1/ballchen in Drosophila), have been proposed to carry out this modification. Phosphorylation of H3 by Haspin has defined roles in mitosis, but the significance of VRK1 activity towards histones in dividing cells has been unclear. Here, using in vitro kinase assays, KiPIK screening, RNA interference, and CRISPR/Cas9 approaches, we were unable to substantiate a direct role for VRK1, or its paralogue VRK2, in the phosphorylation of threonine-3 or serine-10 of Histone H3 in mitosis, although loss of VRK1 did slow cell proliferation. We conclude that the role of VRKs, and their more recently identified association with neuromuscular disease and importance in cancers of the nervous system, are unlikely to involve mitotic histone kinase activity. In contrast, Haspin is required to generate H3T3ph during mitosis.


Subject(s)
Histones , Mitosis , Histones/metabolism , Intracellular Signaling Peptides and Proteins , Phosphorylation , Protein Serine-Threonine Kinases , Threonine/metabolism
16.
Adv Sci (Weinh) ; 9(21): e2200470, 2022 07.
Article in English | MEDLINE | ID: mdl-35603968

ABSTRACT

Microbes with complex functions have been found to be a potential component in tumor microenvironments. Due to their low biomass and other obstacles, intratumor microbiota is poorly understood. Mucosal sites and normal adjacent tissues are important sources of intratumor microbiota, while hematogenous spread also leads to the invasion of microbes. Intratumor microbiota affects the progression of tumors through several mechanisms, such as DNA damage, activation of oncogenic pathways, induction of immunosuppression, and metabolization of drugs. Notably, in different types of tumors, the composition and abundance of intratumor microbiota are highly heterogeneous and may play different roles in the progression of tumors. Because of the concern in this field, several techniques such as omics and immunological methods have been used to study intratumor microbiota. Here, recent progress in this field is reviewed, including the potential sources of intratumor microbiota, their functions and related mechanisms, and their heterogeneity. Techniques that can be used to study intratumor microbiota are also discussed. Moreover, research is summarized into the development of strategies that can be used in antitumor treatment and prospects for possible future research in this field.


Subject(s)
Microbiota , Neoplasms , Humans , Neoplasms/therapy , Tumor Microenvironment
17.
Sci Adv ; 8(11): eabj7698, 2022 Mar 18.
Article in English | MEDLINE | ID: mdl-35302845

ABSTRACT

Solid electrolytes are highly important materials for improving safety, energy density, and reversibility of electrochemical energy storage batteries. However, it is a challenge to modulate the coordination structure of conducting ions, which limits the improvement of ionic conductivity and hampers further development of practical solid electrolytes. Here, we present a skeleton-retained cationic exchange approach to produce a high-performance solid electrolyte of Li3Zr2Si2PO12 stemming from the NASICON-type superionic conductor of Na3Zr2Si2PO12. The introduced lithium ions stabilized in under-coordination structures are facilitated to pass through relatively large conduction bottlenecks inherited from the Na3Zr2Si2PO12 precursor. The synthesized Li3Zr2Si2PO12 achieves a low activation energy of 0.21 eV and a high ionic conductivity of 3.59 mS cm-1 at room temperature. Li3Zr2Si2PO12 not only inherits the satisfactory air survivability from Na3Zr2Si2PO12 but also exhibits excellent cyclic stability and rate capability when applied to solid-state batteries. The present study opens an innovative avenue to regulate cationic occupancy and make new materials.

18.
Adv Sci (Weinh) ; 9(7): e2104126, 2022 03.
Article in English | MEDLINE | ID: mdl-35060688

ABSTRACT

SUMOylation is a ubiquitination-like post-translational modification that plays an essential role in the regulation of protein function. Recent studies have shown that proteins from both RNA and DNA virus families can be modified by SUMO conjugation, which facilitates viral replication. Viruses can manipulate the entire process of SUMOylation through interplay with the SUMO pathway. By contrast, SUMOylation can eliminate viral infection by regulating host antiviral immune components. A deeper understanding of how SUMOylation regulates viral proteins and cellular antiviral components is necessary for the development of effective antiviral therapies. In the present review, the regulatory mechanism of SUMOylation in viral replication and infection and the antiviral immune response, and the consequences of this regulation for viral replication and engagement with antiviral innate immunity are summarized. The potential therapeutic applications of SUMOylation in diseases caused by viruses are also discussed.


Subject(s)
Antiviral Agents , Sumoylation , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Host-Pathogen Interactions , Viral Proteins/genetics , Viral Proteins/metabolism , Virus Replication
19.
Small ; 18(1): e2105684, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34741404

ABSTRACT

To develop methods to generate, manipulate, and detect plasmonic signals by electrical means with complementary metal-oxide-semiconductor (CMOS)-compatible materials is essential to realize on-chip electronic-plasmonic transduction. Here, electrically driven, CMOS-compatible electronic-plasmonic transducers with Al-AlOX -Cu tunnel junctions as the excitation source of surface plasmon polaritons (SPPs) and Si-Cu Schottky diodes as the detector of SPPs, connected via plasmonic strip waveguides of Cu, are demonstrated. Remarkably, the electronic-plasmonic transducers exhibit overall transduction efficiency of 1.85 ± 0.03%, five times higher than previously reported transducers with two tunnel junctions (metal-insulator-metal (MIM)-MIM transducers) where SPPs are detected based on optical rectification. The result establishes a new platform to convert electronic signals to plasmonic signals via electrical means, paving the way toward CMOS-compatible plasmonic components.

20.
Front Cell Dev Biol ; 9: 788410, 2021.
Article in English | MEDLINE | ID: mdl-34901029

ABSTRACT

The interferon-stimulating gene 15 (ISG15) protein is a ubiquitin-like protein induced by interferons or pathogens. ISG15 can exist in free form or covalently bind to the target protein through an enzymatic cascade reaction, which is called ISGylation. ISGylation has been found to play an important role in the innate immune responses induced by type I interferon, and is, thus, critical for the defense of host cells against RNA, DNA, and retroviruses. Through covalent binding with the host and viral target proteins, ISG15 inhibits the release of viral particles, hinder viral replication, and regulates the incubation period of viruses, thereby exerting strong antiviral effects. The SARS-CoV-2 papain-like protease, a virus-encoded deubiquitinating enzyme, has demonstrated activity on both ubiquitin and ISG15 chain conjugations, thus playing a suppressive role against the host antiviral innate immune response. Here we review the recent research progress in understanding ISG15-type ubiquitin-like modifications, with an emphasis on the underlying molecular mechanisms. We provide comprehensive references for further studies on the role of ISG15 in antiviral immunity, which may enable development of new antiviral drugs.

SELECTION OF CITATIONS
SEARCH DETAIL
...