Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 24
Filter
Add more filters










Publication year range
1.
J Insect Sci ; 24(3)2024 May 01.
Article in English | MEDLINE | ID: mdl-38809687

ABSTRACT

Huanglongbing (HLB), a devastating citrus disease caused by Candidatus Liberibacter asiaticus, is efficiently vectored by the Asian citrus psyllid, Diaphorina citri Kuwayama (Hemiptera: Liviidae). Tamarixia radiata (Waterston) plays a crucial role as an ectoparasitoid, preying on D. citri nymphs. By collecting and identifying headspace volatiles from fifth instar nymphs of D. citri using a gas chromatograph-mass spectrometer (GC-MS), we obtained a collection of 9 volatile compounds. These compounds were subsequently chosen to investigate the electrophysiological and behavioral responses of female T. radiata. At a concentration of 10 µg/µl, 9 compounds were compared with cis-3-hexen-1-ol (control), resulting in trans-2-nonenal inducing the highest relative electroantennogram (EAG) value, followed by hexanal, heptanal, n-heptadecane, tetradecanal, n-tetradecane, n-pentadecane, 1-tetradecanol, and 1-dodecanol. The top 5 EAG responses of female T. radiata to these compounds were further investigated through EAG dose-response experiments. The results showed positive dose-responses as concentrations increased from 0.01 to 10 µg/µl. In Y-tube olfactometer bioassays, female T. radiata exhibited a preference for specific compounds. They were significantly attracted to tetradecanal at a concentration of 10 µg/µl and trans-2-nonenal at 0.01 µg/µl, while no significant attraction was observed toward hexanal, heptanal, or n-heptadecane. Our report is the first to demonstrate that volatiles produced by D. citri nymphs attract T. radiata, which suggests that this parasitoid may utilize nymph volatiles to locate its host.


Subject(s)
Hemiptera , Nymph , Volatile Organic Compounds , Animals , Nymph/growth & development , Nymph/physiology , Hemiptera/physiology , Female , Wasps/physiology , Electrophysiological Phenomena , Behavior, Animal/drug effects , Arthropod Antennae/physiology , Arthropod Antennae/drug effects
2.
Water Res ; 256: 121611, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38640567

ABSTRACT

Natural small molecular organic matter (NSOM), ubiquitous in natural waters and distinct from humic acid or fulvic acid, is a special type of dissolved organic matter (DOM) which is characterized as strong photosensitivity and simple molecular structure. However, little study had been directed on the role of NSOM in eliminating emerging contaminants in advanced reduction process (ARP). This study took three small molecular isomeric organic acids (p-hydroxybenzoic acid, pHBA; salicylic acid, SA; m-hydroxybenzoic acid, mHBA) as the representative substances of NSOM to explore these mechanisms on promoting Ribavirin (RBV, an anti COVID-19 medicine) degradation in ultraviolet activated sulfite (UV/Sulfite) process. The results demonstrated that the observed degradation rate constant of RBV (kobs-RBV) was 7.56 × 10-6 s-1 in UV/Sulfite process, indicating that hydrated electron (eaq-) from UV/Sulfite process could not effectively degrade RBV, while it increased by 178 and 38 times when pHBA and SA were introduced into UV/Sulfite process respectively, suggesting that pHBA and SA strongly promoted RBV degradation while mHBA had no promotion on RBV abatement in UV/Sulfite process. Transient absorption spectra and reactive intermediates scavenging experiment indicated that the triplet excited state pHBA and SA (3pHBA* and 3SA*) contributed to the degradation of RBV through non-radical process. Notably, eaq- played the role of key initiator in transforming pHBA and SA into their triplet states. The difference of kobs-RBV in UV/Sulfite/pHBA and UV/Sulfite/SA process was attributed to different generation pathways of 3pHBA* and 3SA* (high molar absorptivity at the wavelength of 254 nm and photosensitive cycle, respectively) and their second order rate constants towards RBV (kRBV-3pHBA* = 8.60 × 108 M-1 s-1 and kRBV-3SA* = 6.81 × 107 M-1 s-1). mHBA could not degrade RBV for its lack of intramolecular hydrogen bond and low molar absorptivity at 254 nm to abundantly transform into its triplet state. kobs-RBV increased as pH increased from 5.0 to 11.0 in UV/Sulfite/SA process, due to the high yield of eaq- in alkaline condition which promoted the generation of 3SA* and the stable of the absorbance of SA at 254 nm. By contrast, kobs-RBV underwent a process of first increasing and then decreasing in UV/Sulfite/pHBA process as the increase of pH, and its highest value achieved in a neutral condition. This lied in the exposure of eaq- increased as the increase of pH which promoted the generation of 3pHBA*, while the molar absorptivity of pHBA at 254 nm decreased as the increase of pH in an alkaline condition which inhibited the yield of 3pHBA*. The RBV degradation pathways and products toxicity assessment indicated that UV/Sulfite/pHBA had better detoxification performance on RBV than UV/Sulfite/SA process. This study disclosed a novel mechanism of emerging contaminants abatement through non-radical process in NSOM mediated ARP, and provide a wide insight into positive profile of DOM in water treatment process, instead of only taking DOM as a quencher of reactive intermediates.


Subject(s)
Antiviral Agents , Antiviral Agents/chemistry , Ultraviolet Rays , Sulfites/chemistry
3.
Environ Sci Pollut Res Int ; 30(18): 54149-54159, 2023 Apr.
Article in English | MEDLINE | ID: mdl-36869175

ABSTRACT

In this study, the sludge-based biochar (BC) was prepared by dewatered sludge from a membrane bioreactor to treat the membrane concentrate. Then, the adsorbed and saturated BC was regenerated (RBC) by pyrolysis and deashing treatment to further treat the membrane concentrate. Afterward, the composition of membrane concentrate before and after BC or RBC treatment was detected, and the biochars' surface characteristics were characterized. The results showed that RBC outperformed BC in the abatement of chemical oxygen demand (CODCr), ammonia nitrogen (NH3-N), and total nitrogen (TN), with their removal rates of 60.07%, 51.55%, and 66.00%, respectively, an improvement of 9.49%, 9.00% and 16.50% of the removal rate compare to BC. The specific surface area of BC and RBC was about 109 times as much as the original dewatered sludge, and the pore size of BC and RBC belonged to mesopore which was a benefit for removing small and mediate size pollutants. The increase of the oxygen-containing functional group in RBC and the ash abatement contributed much to the improvement of RBC adsorption performance. In addition, cost analysis showed that BC+RBC had a cost of 0.76$/kg for COD removal, which was a lower cost than other common membrane concentrate treatment technologies.


Subject(s)
Sewage , Water Pollutants, Chemical , Water Pollutants, Chemical/analysis , Adsorption , Charcoal/chemistry , Nitrogen/analysis
4.
Ecotoxicol Environ Saf ; 251: 114519, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36634478

ABSTRACT

Blue light with a wavelength of 400-470 nm is the composition of the visible light. However, in recent years, blue light contributed the most significance to light pollution due to the artificial light at night. Previously, we have demonstrated that the Asian citrus psyllid (ACP), Diaphorina citri, an important pest in citrus production, has significant positive phototaxis with a light-emitting diode light of 400 nm. In this study, ACP with positive phototactic behavior to 400 nm light (PH) and non-phototactic behavior to 400 nm light (NP) were collected, individually. Transcriptome dynamics of head tissues of PH and NP groups were captured by using RNA-sequencing technology, respectively. Forty-three to 46 million clean reads with high-quality values were obtained, and 1773 differential expressed genes (DEGs) were detected. Compared with the NP group, there were 841 up-regulated DEGs and 932 down-regulated DEGs in the PH group. Eight pathways were significantly enriched in the PH group in the KEGG database, while 43 up-regulated pathways and 25 down-regulated pathways were significantly enriched in the PH group in the GO database. The DGE approach was reliable validated by real time quantitative PCR. Results indicated that the blue light acted as an abiotic stress causing physiological and biochemical responses such as oxidative stress, protein denaturation, inflammation and tumor development in ACPs. Additionally, the light was absorbed by photoreceptors of ACPs, and converted into electrical signal to regulate neuromodulation. This study provides basic information for understanding the molecular mechanisms of ACP in response to blue light and provides a reference for further studies to elucidate phototactic behavior.


Subject(s)
Citrus , Hemiptera , Animals , Phototaxis , Hemiptera/genetics , Hemiptera/metabolism , Transcriptome , Light , Citrus/genetics , Brain
5.
Insect Sci ; 30(1): 95-108, 2023 Feb.
Article in English | MEDLINE | ID: mdl-35510515

ABSTRACT

Diaphorina citri is an important vector of Citrus Huanglongbing (HLB) disease. After feeding on young host plant shoots, the population of D. citri can increase significantly. Females also only lay eggs on young shoots. However, there are few studies on the mechanism of this phenomenon. Exogenous nutrient signals can affect the insulin signaling system of D. citri after feeding on young shoots. In this study, the expression of upstream factors DcILP1, DcILP2, and DcIR in the insulin signaling system of D. citri was upregulated after feeding on young shoots. After being silenced by RNA interference technology, the results showed that the number of oviposited eggs of D. citri was significantly decreased and the ovarian development was inhibited with severe vacuolation. In addition, detection using quantitative reverse transcription-polymerase chain reaction showed that the upstream regulatory gene DcRheb of the target of rapamycin (TOR) pathway and the downstream reproduction-related DcVg gene were also significantly downregulated. These results suggest that feeding upon young shoots may upregulate the expression levels of upstream factors DcILP1, DcILP2, and DcIR in the insulin signaling system. The signal will be through upregulating the expression of DcRheb, an upstream gene of the TOR signaling pathway. This in turn influences yolk metabolism, which eventually causes the ovaries of female D. citri to mature and therefore initiate oviposition behavior.


Subject(s)
Citrus , Hemiptera , Female , Animals , Insulin , Oviposition , Peptides , RNA Interference , Hemiptera/genetics , Plant Diseases
6.
Environ Pollut ; 316(Pt 2): 120649, 2023 Jan 01.
Article in English | MEDLINE | ID: mdl-36375574

ABSTRACT

Microplastics (MPs) are emerging as a class of pollutants that are a potential threat to biological and human health. Aggregation and settling are crucial to controlling MPs transport and environmental fate. However, the influence of clay minerals in the aqueous environment on the aggregation-settling processes of larger size MPs and its mechanisms remain unclear. In this study, homoaggregation of pristine and aged polyethylene microplastics (PEs) and heteroaggregation-settling of PEs with typical clay minerals (chlorite, illite, kaolinite, montmorillonite) under different hydrochemical conditions (NaCl, CaCl2, MgCl2) were systematically investigated. The results showed that the cation type has a greater influence on the homoaggregation system. In detail, the aged PEs is more stable than pristine PEs in monovalent electrolyte solutions, but not in divalent electrolytes. In heteroaggregation systems, electrostatic repulsion dominates the interaction of PEs (pristine, aged) with clay minerals. However, the settling ratio of PEs (pristine, aged) contributed by clay minerals is not very dependent on the clay mineral type. Conversely, high NaCl concentrations are more conducive to the heteroaggregation-settling of PEs, which can be explained by the DLVO theory. The findings of this study provide new insights into the environmental fate and distribution of MPs in natural waters.


Subject(s)
Microplastics , Polyethylene , Humans , Aged , Clay , Plastics , Sodium Chloride , Minerals
7.
Biomed Res Int ; 2022: 7441296, 2022.
Article in English | MEDLINE | ID: mdl-36246988

ABSTRACT

The saponins of Polygonatum sibiricum had many pharmacological activities such as antitumor, antioxidation, and blood sugar lowering, which were synthesized by two pathways: mevalonate (MVA) and methylerythritol phosphate (MEP). 3-Hydroxy-3-methylglutaryl coenzyme A synthase (HMGS) was the key enzyme in the MVA synthesis pathway, and its expression level may affect the accumulation of saponins which were the main active ingredients of P. sibiricum. In this study, we successfully cloned HMGS1 and HMGS2 from P. sibiricum and their sequence similarity was 93.71% with 89 different sites. The multiple sequence alignment results indicated that the N-terminal sequences of HMGS were conserved. Phylogenetic analysis showed that P. sibiricum, A. officinalis, N. tazetta, D. nobile, and other relatives had a common evolutionary ancestor. The expression levels of both HMGSs and the total saponin content in different tissues revealed that HMGS expression in rhizomes was positively correlated with total saponin content. Further study of the abiotic stress effect of Methyl Jasmonate (MeJA) demonstrated that the expression of HMGS1 and HMGS2 genes was induced by MeJA, peaked at 24 h, and fell by 48 h. Our present findings would provide a blueprint for future studies of HMGS and its role in triterpenoid biosynthesis in P. sibiricum.


Subject(s)
Polygonatum , Saponins , Triterpenes , Acetates , Blood Glucose , Cloning, Molecular , Coenzyme A/metabolism , Cyclopentanes , Gene Expression Regulation, Plant , Mevalonic Acid/metabolism , Oxylipins , Phosphates/metabolism , Phylogeny , Polygonatum/genetics
8.
J Environ Chem Eng ; 10(6): 108641, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36186959

ABSTRACT

Chloroquine Phosphate (CP) is an antiviral drug used for treatment of COVID-19. It is released into wastewater and eventually contaminates natural water. This study reports an effective homogeneous catalysis way for CP degradation by the 2,2,6,6-Tetramethylpiperidine-N-oxyl (TEMPO) enhanced persulfate (PDS) activation under UVB-LEDs irradiation at 305 nm. TEMPO at a low concentration (0.1 µM) enhanced CP degradation in UV305/PDS process in deionized water at different pHs, in different anions and different molecular weight dissolved organic matter solutions and in real surface water. The enhancement was verified to be attributed to the electron shuttle role of TEMPO, which promoted the yield of SO4 •- by enhancing electron donating capacity of the reacting system. The degradation products of CP and their acute toxicities suggested that UV305/PDS/TEMPO process has better performance on CP detoxification than UV305/PDS process. This study provides a new way to tackle the challenge of pharmaceutical pollutions in homogeneous photocatalysis process for natural water and sewage restoration.

9.
Appl Catal B ; 317: 121709, 2022 Nov 15.
Article in English | MEDLINE | ID: mdl-35812172

ABSTRACT

Ribavirin (RBV) is an antiviral drug used for treating COVID-19 infection. Its release into natural waters would threaten the health of aquatic ecosystem. This study reports an effective approach to degrade RBV by the trace N-oxyl compounds (2,2,6,6-tetramethylpiperidine-N-oxyl (TEMPO) and N-Hydroxyphthalimide (NHPI)) enhanced UV activated free chlorine (UV/Chlorine) process. The results indicated that TEMPO and NHPI at low concentrations (0.1 µM and 1 µM, respectively) could strongly enhance RBV degradation in both deionized water with different pHs and practical surface water. The enhancement was verified to be attributed to the transformation of TEMPO and NHPI into their reactive forms (i.e., TEMPO+ and PINO), which generations deeply relied on radicals. The two N-oxyl compounds inhibit ClO• yield by hindering the reaction of free chlorine vs. HO• and Cl•. The analyses on acute toxicities of RBV degradation products indicate that UV/Chlorine/N-oxyl compounds process can detoxify RBV more efficiently than UV/Chlorine process.

10.
Biopolymers ; 113(6): e23490, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35460266

ABSTRACT

Polygonati rhizoma (PR), a traditional medical and edible product, is rich in polysaccharides and exhibits physiological activity, including antioxidant, hypoglycemic and hypolipidemic properties. Neutral polysaccharides have been reported to be one of the main active ingredients of Polygonatum, with many of these fractions being responsible for the biological activity. This behavior was shown to be closely connected to the chemical structure, monosaccharide composition, and glycosidic bond type. There are few reports on the chemical constituents of the neutral polysaccharides from different sources of PR. In this study, neutral polysaccharides of PR from four different regions of China (Chun'an (Zhejiang), Xixia (Henan), Danfeng (Shanxi), and Pan'an (Zhejiang)), named CAZJ, XXHN, DFSX, and PAZJ, respectively, were isolated by anion-exchange and gel-permeation chromatography. Structures of the four polysaccharides were investigated. The results showed that all of them were mainly glucose and mannose, while the monosaccharide composition and content of polysaccharides from different sources varied. The molecular weights of CAZJ, XXHN, DFSX, and PAZJ were 14.119, 22.352, 18.127, and 15.699 kDa, respectively. Infrared spectra illustrated the existence of α-glycosidic bond and ß-glycosidic bond in the polysaccharides. CAZJ, XXHN, and DFSX possessed a pyranose ring structure, whereas PAZJ had a furanose ring structure. Congo red test indicated that XXHN, DFSX, and PAZJ had a triple-helix structure. X-ray diffraction showed that the polysaccharides consisted of crystalline and amorphous regions. All four polysaccharides exhibited different degrees of antioxidant and hypoglycemic activities with a dose-dependent manner in the 1.0-10.0 mg/mL concentration range. Correlation analysis revealed that the bioactivities of polysaccharides was significantly related to monosaccharide composition, uronic acid, and protein content. The results suggested that neutral polysaccharides could be used as potential natural antioxidants and hypoglycemic agents for functional and nutraceutical applications.


Subject(s)
Polygonatum , Antioxidants/chemistry , Antioxidants/pharmacology , Hypoglycemic Agents/chemistry , Hypoglycemic Agents/pharmacology , Monosaccharides , Polygonatum/chemistry , Polysaccharides/chemistry
11.
Chemosphere ; 292: 133425, 2022 Apr.
Article in English | MEDLINE | ID: mdl-34954195

ABSTRACT

Microplastics (MPs) are emerging pollutants that have gained much attention due to their potential harm to aquatic ecosystems and organisms. In particular, MP conjugates are loaded with chemical contaminants (e.g., atrazine pesticide), which may be ingested by organisms and can pose higher risks. However, the combined pollution effects and interaction mechanisms remain poorly understood. In this study, we systematically explored the adsorption behaviors and mechanisms of atrazine (ATZ) on pristine and aged MPs using kinetics, isotherms, and thermodynamic models. The target MPs included polystyrene (PS), polyethylene (PE), and polypropylene (PP) as well as the corresponding aged types. Moreover, the effects of pH, humic acid (HA), ionic strength, and ion species (Cl-, SO42-, HCO3-, Mg2+, and Ca2+) of aqueous factors were evaluated. The adsorption capacities of MPs under kinetic equilibrium conditions were as follows: aged PE (0.940 mg g-1) > aged PP (0.677 mg g-1) > aged PS (0.663 mg g-1) > PS (0.565 mg g-1) > PE (0.535 mg g-1) > PP (0.410 mg g-1). The adsorption kinetics and isotherm model results suggested a combination of physisorption and chemisorption. The aging process and pH significantly affected the intrinsic charge on the surface of the MPs and their adsorption capacities. Moreover, the presence of water medium parameters might enhance or inhibit adsorption of different MPs. Hydrophobic and electrostatic attraction mainly contributed to the adsorption of ATZ on pristine MPs, whereas complex surface diffusion and hydrogen bonding dominated the ATZ adsorption on aged MPs with more oxygen-containing groups. In addition, we examined the desorption performance of ATZ from MPs under simulated gastric and intestinal conditions of warm-blooded animals, and found that the ATZ desorption ratio of aged PE (35.3%) showed the most significant effects among the six target types of MPs. This study provides in-depth insights into the co-existence and complex behaviors of MPs and the pesticide pollutant ATZ, to attract further attention to their ecological risks in freshwater environments.


Subject(s)
Atrazine , Water Pollutants, Chemical , Adsorption , Ecosystem , Kinetics , Microplastics , Plastics , Thermodynamics , Water Pollutants, Chemical/analysis
12.
Water Res ; 193: 116893, 2021 Apr 01.
Article in English | MEDLINE | ID: mdl-33582494

ABSTRACT

Microcystin-LR (MC-LR), a polypeptide toxin generated by cyanobacteria, threatens the safety of drinking water supplies. In this study, fulvic acid (FA) was separated into two molecular weight (MW) ranges to evaluate the effects of FA size on MC-LR degradation in the chlorine/UV process. The rates of MC-LR degradation were significantly reduced in FA-containing water (3.7 × 10-3 s-1 for small MW FA; 4.3 × 10-3 s-1 for large MW FA) as compared with FA free water (4.9 × 10-3 s-1). The contributions of ClO• to MC-LR degradation were dramatically lower in small MW FA water (0.4%) than large MW FA (13.9%) and FA free water (17.4%), suggesting inhibition by lignin-like substances in FA in the transformation of Cl• to ClO• and scavenging ClO•. Monochlorination and hydroxylation occurred in the first step of the MC-LR degradation process. The accumulation of intermediate products in the chlorine/UV process indicated that small MW FA inhibited further degradation of MC-LR. Small MW FA, rather than MC-LR degradation, was the dominant factor in minimizing MC-LR cytotoxicity toward a human intestinal epithelial cell line.


Subject(s)
Chlorine , Microcystins , Benzopyrans , Humans , Marine Toxins , Photolysis
13.
Environ Sci Pollut Res Int ; 28(13): 16816-16829, 2021 Apr.
Article in English | MEDLINE | ID: mdl-33394393

ABSTRACT

Tourism activities have brought overexploitation of natural ecotourism resources and ecological pressure challenge though it exactly contributes to the economic prosperity of a region. Research on tourism ecological safety is of great importance for tourist destinations to balance the relationship between environmental protection and tourism development. Qilian Mountains National Park (QMNP) has a prominent ecological status and is a vital ecological barrier in the northwest of China, which attracts large numbers of tourists every year for its rich tourism resources in the Zhangye (ZY) region. However, there is still a lack of systematic research on the environmental impact of tourism activities and on achieving sustainable development of ecotourism in national parks. We took QMNP-ZY as the study object, establishing the system of indicators based on the PSR model for the comprehensive evaluation of tourism ecological safety and the diagnosis of the main obstacles. Moreover, the autoregressive integrated moving average (ARIMA) model was introduced to forecast the evolutionary trends of tourism ecological security in QMNP-ZY. The results showed that (1) The tourism ecological security composite values of the QMNP-ZY exhibited a "U"-type evolution of "first fall-then rise" feature, and the pressure layer gradually became the dominant factor. (2) For the main barrier factors, there had been a shift from response factors. (3)The output of the ARIMA model demonstrated that the level of tourism ecological security would rise in a short period and then decline a few years later. Especially, the contribution degree of economic to the tourism eco-security development will weaken with the region's economy growing.


Subject(s)
Parks, Recreational , Tourism , China , Conservation of Natural Resources , Ecosystem , Natural Resources
14.
3 Biotech ; 10(7): 322, 2020 Jul.
Article in English | MEDLINE | ID: mdl-32656055

ABSTRACT

Polygonatum sibiricum is widely consumed as a traditional Chinese herb and edible plant in China. Despite its nutritional and medical values, research on Polygonatum Mill. has been scarce, particularly as far as its genetic diversity is concerned. In this study, fourteen expressed sequence tag-derived simple sequence repeat (EST-SSR) and seven sequence-related amplified polymorphism (SRAP) markers were used to evaluate the genetic diversity in fifty Polygonatum Mill. accessions. The EST-SSRs and SRAPs produced 173 (90.58%) and 113 (93.39%) polymorphic bands, respectively. Unweighted Pair-Group Method Analysis (UPGMA) based on the combined data matrices of EST-SSRs and SRAPs divided the fifty Polygonatum Mill. accessions into fourteen groups. In addition, accessions of P. cyrtonema Hua obtained from Anhui and Zhejiang provinces were clustered according to their geographic origin. Furthermore, some accessions were gathered together based on species, such as P. kingianum Coll. et Hemsl, P. punctatum Royle ex Kunth, P. odoratum (Mill.) Druce, and P. sibiricum Red., and bootstrap analysis for clustering fully supported the grouping of the accessions. The Analysis of Molecular Variance (AMOVA) results revealed higher variation within populations (95%) rather than among populations (5%), indicating that Polygonatum Mill. has a low genetic differentiation between populations, and Principal Coordinate Analysis (PCoA) greatly supported the results of cluster analysis and AMOVA analysis. Finally, five markers which could produce abundant and stable bands were used to construct DNA fingerprinting database of Polygonatum Mill.. Our results demonstrated the utility of both EST-SSR and SRAP markers to successfully evaluate and identify Polygonatum Mill..

15.
BMC Pregnancy Childbirth ; 20(1): 313, 2020 May 20.
Article in English | MEDLINE | ID: mdl-32434545

ABSTRACT

BACKGROUND: Ovarian hyperstimulation syndrome (OHSS) is an iatrogenic complication of ovarian stimulation. Prevention and early recognition of OHSS are important to ensure patient safety. CASE PRESENTATION: In this case, we reported a patient who underwent controlled ovarian hyperstimulation (COH) and in vitro fertilization (IVF). All embryos were cryopreserved to reduce possible OHSS. However, OHSS still occurred after the patient had a frozen-thawed embryo transfer (FET) with hormone replacement therapy (HRT) and obtained a dichorionic diamniotic triplet pregnancy. After multifetal pregnancy reduction (MFPR) and supportive treatment, all the symptoms regressed. CONCLUSIONS: Prompt recognition of OHSS, especially in patients who have no history of ovulation induction and fresh embryo transfer, is very important. Multiple pregnancies may lead to severe OHSS because of the high level of human chorionic gonadotropin (hCG) in the early stages. We suggest that a single embryo transfer may be necessary and beneficial for patients.


Subject(s)
Cryopreservation , Embryo Transfer/adverse effects , Ovarian Hyperstimulation Syndrome/etiology , Adult , Chorionic Gonadotropin , Female , Fertilization in Vitro , Humans , Live Birth , Ovulation Induction/adverse effects , Pregnancy , Pregnancy Rate , Pregnancy, Triplet
16.
Insects ; 10(5)2019 May 16.
Article in English | MEDLINE | ID: mdl-31100931

ABSTRACT

Tamarixia radiata (Waterston) is an important ectoparasitoid of the Asian citrus psyllid, Diaphorina citri Kuwayama, a globally destructive pest of citrus. In the present study, a Y-tube olfactometer was employed to investigate whether the parasitoid T. radiata is capable of utilizing the odour source emitted by both plants and insect hosts during its foraging. The odour sources included Murraya paniculata (L.) shoots, 1st, 2nd, 3rd, 4th, and 5th D. citri instar nymphs, both individually and in combinations. Moreover, nymph-stage choice for parasitism, including 3rd, 4th, and 5th D. citri instar nymphs, was carried out. The results indicated that female T. radiata were only significantly attracted to volatiles emitted by M. paniculata shoots, 3rd, 4th, and 5th instar nymphs of D. citri, but could not distinguish between them. T. radiata males were not attracted by odours sourced from any instar D. citri nymphs. Female T. radiata adults exhibited a significant preference to later instar nymphal stages of D. citri for oviposition. The results from this study can be used to guide further investigations on the searching behaviour of this parasitoid and its utilization in D. citri biocontrol.

17.
Ecotoxicol Environ Saf ; 174: 514-523, 2019 Jun 15.
Article in English | MEDLINE | ID: mdl-30861439

ABSTRACT

UV-B radiation is an important environmental factor. Exposure to excess UV-B radiation can cause serious effects on the development, survival, and reproduction of different organisms. Plants and animals have developed many different strategies to cope with UV-B-induced damage, but the physiological response of insects to UV-B remains unclear. In the present study, the red flour beetle Tribolium castaneum (Herbst) was used to assess the stress response of UV-B. The underlying molecular mechanisms were explored using RNA sequencing. We investigated the transcriptomic profile of T. castaneum larvae at 4 and 24 h after treatment with UV-B radiation via digital gene expression analysis. The 310 and 996 differentially expressed genes were detected at 4 and 24 h, respectively. Then the biological functions and associated metabolic processes of these genes were determined by Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analysis. The reliability of the data was verified using qRT-PCR. The results indicated that several differentially expressed genes are involved in antioxidation, DNA repair, protein folding, carbon flux diversion, and the extracellular matrix to protect against UV-B-induced damage. This study will increase our understanding of the molecular mechanism underlying insect response to UV-B radiation.


Subject(s)
Gene Expression Profiling/methods , Larva/radiation effects , Transcriptome/radiation effects , Tribolium/radiation effects , Ultraviolet Rays , Animals , Base Sequence , Gene Ontology , Larva/genetics , Microarray Analysis , Reproducibility of Results , Sequence Analysis, RNA , Tribolium/genetics
18.
Chemosphere ; 209: 96-103, 2018 Oct.
Article in English | MEDLINE | ID: mdl-29913404

ABSTRACT

Microcystins (MCs), produced by cyanobacterial blooms in eutrophic water, are common toxic metabolites and a potential threat to human health. However, the mechanism of MC photodegradation by photosensitizers in raw water remains unclear. In photodegradation and quenching experiments, this study investigates the photosensitized degradation of microcystin-LR (MC-LR) by fulvic acid (FA, a kind of dissolved organic matter with natural photosensitizing properties) under ultraviolet (UV) light irradiation. The photodegradation mechanisms of FA are also explored. The photodegradation process of MC-LR by FA was consistent with second-order reaction kinetics. The degradation rate of MC-LR in FA decreased from 80% to 55% as the pH increased from 3 to 9, because the binding ability of FA to MC-LR reduces as the pH increases. Given that FA can both inhibit and promote MC-LR degradation depending on its concentration, the optimum initial FA concentration for degrading MC-LR was determined as 9.86 mgC·L-1. The excited triplet state of FA (3FA∗) accounted for 50.12% of the MC-LR loss; the remaining loss (49.88%) was contributed by reactive oxygen species and direct photolysis. This implies that the main pathway of MC-LR degradation is reaction with 3FA∗. The MC-LR degradation rate is 36% higher under UV irradiation than that under simulated sunlight irradiation.


Subject(s)
Benzopyrans/pharmacology , Microcystins/radiation effects , Photosensitizing Agents/pharmacology , Ultraviolet Rays , Water/chemistry , Kinetics , Marine Toxins , Photolysis , Water Pollutants, Chemical/chemistry , Water Pollutants, Chemical/radiation effects , Water Purification/methods
SELECTION OF CITATIONS
SEARCH DETAIL
...