Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Language
Publication year range
1.
Methods Mol Biol ; 2586: 79-88, 2023.
Article in English | MEDLINE | ID: mdl-36705899

ABSTRACT

RNA secondary structure comparison is one of the important analyses for elucidating individual functions of RNAs since it is widely accepted that their functions and structures are strongly correlated. However, although the RNA secondary structures with pseudoknot play important roles in vivo, it is difficult to deal with such structures in silico due to their structural complexity, which is a major obstacle to the analysis of RNA functions.Here, we introduce an algorithm and a metric for comparing pseudoknotted RNA secondary structures based on topological centroid identification and tree edit distance and describe the usage protocol of a software enabling us to run the comparison. This software is publicly available and works on both Microsoft Windows and Apple macOS.


Subject(s)
Algorithms , RNA , RNA/genetics , RNA/chemistry , Nucleic Acid Conformation , Software , Sequence Analysis, RNA/methods
2.
Sci Rep ; 12(1): 229, 2022 01 07.
Article in English | MEDLINE | ID: mdl-34997142

ABSTRACT

Protein kinase-inhibitor interactions are key to the phosphorylation of proteins involved in cell proliferation, differentiation, and apoptosis, which shows the importance of binding mechanism research and kinase inhibitor design. In this study, a novel machine learning module (i.e., the WL Box) was designed and assembled to the Prediction of Interaction Sites of Protein Kinase Inhibitors (PISPKI) model, which is a graph convolutional neural network (GCN) to predict the interaction sites of protein kinase inhibitors. The WL Box is a novel module based on the well-known Weisfeiler-Lehman algorithm, which assembles multiple switch weights to effectively compute graph features. The PISPKI model was evaluated by testing with shuffled datasets and ablation analysis using 11 kinase classes. The accuracy of the PISPKI model with the shuffled datasets varied from 83 to 86%, demonstrating superior performance compared to two baseline models. The effectiveness of the model was confirmed by testing with shuffled datasets. Furthermore, the performance of each component of the model was analyzed via the ablation study, which demonstrated that the WL Box module was critical. The code is available at https://github.com/feiqiwang/PISPKI .


Subject(s)
Neural Networks, Computer , Protein Kinase Inhibitors/chemistry , Protein Kinases/chemistry , Algorithms , Amino Acid Motifs , Machine Learning , Phosphorylation , Protein Kinases/metabolism
3.
J Comput Biol ; 27(9): 1443-1451, 2020 09.
Article in English | MEDLINE | ID: mdl-32058802

ABSTRACT

Comparison of RNA structures is one of the most crucial analysis for elucidating their individual functions and promoting medical applications. Because it is widely accepted that their functions and structures are strongly correlated, various methods for RNA secondary structure analysis have been proposed owing to the difficulty in predicting RNA three-dimensional structure directly from its sequence. However, there are few methods dealing with RNA secondary structures with a specific and complex partial structure called pseudoknot despite its significance to biological process, which is a big obstacle for analyzing their functions. In this study, we propose a novel tree representation of pseudoknotted RNA secondary structures by topological centroid identification and their comparison methods based on the tree edit distance. In the proposed method, a given graph representing an RNA secondary structure is transformed to a tree rooted at one of the vertices constituting the topological centroid that is identified by removing cycles with peeling processing for the graph. When comparing tree-represented RNA secondary structures collected from a public database using the tree edit distance and functional gene groups defined by Gene Ontology (GO), the proposed method showed better clustering results according to their GOs than canonical RNA sequence-based comparison. In addition, we also report a case that the combination of the tree edit distance and the sequence edit distance shows a better classification of the pseudoknotted RNA secondary structures.


Subject(s)
Nucleic Acid Conformation , RNA/ultrastructure , Sequence Alignment , Algorithms , Base Sequence/genetics , Cluster Analysis , Gene Ontology , RNA/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...