Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Anal Methods ; 15(43): 5803-5812, 2023 11 09.
Article in English | MEDLINE | ID: mdl-37901988

ABSTRACT

Fluorescent boronate affinity molecules have gained increasing attention in the field of fluorescence sensing and detection due to their selective recognition capability towards cis-diol-containing molecules (cis-diols). However, the conventional fluorescent boronate affinity molecules face a challenge in differentiating the type of cis-diol only by their fluorescence responses. In this study, a simple method was used to discriminate different types of cis-diols, including nucleosides, nucleotides, sugars, and glycoproteins based on the phenylboronic acid-functionalized fluorescent molecules combined with principal component analysis (PCA). Both fluorescent molecules were simply synthesized by the covalent interaction between the amino group in 3-aminophenyl boronic acid and the isothiocyanate group in fluorescein or rhodamine B. In view of their fluorescence-responsive behaviors to these cis-diols directly, it is impossible to differentiate their types even under the optimized experimental conditions. When PCA was employed to treat the fluorescence response data and the quenching constants with their molecular weight, different types of cis-diols can be distinguished successfully. As a result, by integrating the fluorescence response of the boronate affinity probes with PCA, it can greatly improve the specific recognition capability of the boronic acids, providing a simple and direct way to distinguish and identify different types of cis-diols.


Subject(s)
Nucleosides , Nucleotides , Principal Component Analysis , Glycoproteins
2.
Food Chem ; 410: 135419, 2023 Jun 01.
Article in English | MEDLINE | ID: mdl-36623462

ABSTRACT

Development of multiple detection methods to monitor non-steroidal anti-inflammatory drugs (NSAIDs) in food is an effective way to protect human health. Here, we aimed to synthesize fluorescent artificial receptors by molecular imprinting technique to construct a simultaneous detection system targeting NSAIDs. Rhodamine B and fluorescein-functionalized silanes were employed as the fluorescence signal reporters for naproxen and ketoprofen, respectively. Two fluorescent molecularly imprinted polymers (FMIPs) were obtained with high specificity, giving cross-reactivity factors of 6.4-15.8 (naproxen) and 2.6-25.6 (ketoprofen). Both FMIPs also displayed rapid response time (5 min) and high sensitivity (detection limit at âˆ¼ nM level). A simultaneous detection system was constructed based on the FMIPs and applied for sensing the spiked NSAIDs in real samples, showing recoveries of 71-119 %, comparable with the HPLC methods (70-113 %). In summary, use of different FMIPs to construct simultaneous detection systems is practicable, and provides a flexible way for sensing multiple hazards in food samples.


Subject(s)
Ketoprofen , Molecular Imprinting , Receptors, Artificial , Humans , Naproxen , Anti-Inflammatory Agents, Non-Steroidal , Fluorescein , Coloring Agents , Molecular Imprinting/methods , Limit of Detection
3.
Compr Rev Food Sci Food Saf ; 21(6): 4900-4920, 2022 11.
Article in English | MEDLINE | ID: mdl-36117270

ABSTRACT

Chemical contaminants in food generally include natural toxins (mycotoxins, animal toxins, and phytotoxins), pesticides, veterinary drugs, environmental pollutants, heavy metals, and illegal additives. Developing a low-cost, simple, and rapid detection technology for harmful substances in food is urgently needed. Analytical methods based on different advanced materials have been developed into rapid detection methods for food samples. In particular, photonic crystal (PC) materials have a unique surface periodic structure, structural color, a large surface area, easy integration with photoelectronic and magnetic devices which have great advantages in the development of rapid, low-cost, and highly sensitive analytical methods. This review focuses on the PC materials in the view of their fabrication processes, functionalized recognition components for the specific recognition of hazardous substances, and applications in the separation, enrichment, and detection of chemical hazards in real samples. Suspension array based on three-dimensional PC microspheres by droplet-based microfluidic assembly is a great promising and powerful platform for food safety detection fields. For the PCs selective analysis, biological antibodies, aptamers, and molecularly imprinted polymers (MIPs) could be modified for specific recognition of target substances, particularly MIPs because of their low-cost and easy mass production. Based on these functional PCs, various toxic and hazardous substances can be selectively enriched or recognized in real samples and further quantified in combination of liquid chromatography method or optical detection methods including fluorescence, chemiluminescence, and Raman spectroscopy.


Subject(s)
Molecular Imprinting , Mycotoxins , Animals , Molecular Imprinting/methods , Polymers/chemistry , Food Safety , Hazardous Substances
4.
Talanta ; 239: 123084, 2022 Mar 01.
Article in English | MEDLINE | ID: mdl-34836638

ABSTRACT

Many strategies have been reported for the preparation of glycoproteins imprinted polymers, but they take a long time and cannot produce imprinted polymers continuously. Herein, a microfluidic synthesis approach was developed to make glycoproteins imprinted nanospheres rapidly and continuously. By using ovalbumin as a model template and a synthesized phenylboronic acid-tagged silane reagent as the functional monomer, the synthetic conditions including the polymerization contents, the flow rate and the microfluidic reactor size were comprehensively studied. Under the optimized conditions, the glycoprotein imprinted nanospheres could be synthesized rapidly (<2 h), and exhibited high specificity with cross-reactivity factors of 1.3 (ovotransferrin), +∞ (horse-radish peroxidase), 5.1 (ß-lactoglobulin) and 101 (bovine serum albumin). The kinetic and equilibrium binding behaviors, reusability and potential applications of the glycoprotein imprinted nanosphere were investigated. Such microfluidic synthesis strategy can be easily extended to produce other target glycoproteins imprinted nanospheres, as well as non-glycoproteins by using suitable functional monomers.


Subject(s)
Molecular Imprinting , Nanospheres , Glycoproteins , Microfluidics , Polymers
5.
RSC Adv ; 11(13): 7732-7737, 2021 Feb 10.
Article in English | MEDLINE | ID: mdl-35423232

ABSTRACT

Fluorescent molecularly imprinted polymers (FMIPs) are gaining increasing attention in analytical and medical sciences, particularly silica-based FMIPs due to their low cost, environmentally friendly nature and good biocompatibility. However, at present, silica-based FMIPs are usually prepared through several steps and displayed low selectivity. Here, a simple approach was utilized for preparing silica-based FMIP nanoparticles. The polymerization was initiated by 3-aminopropyltriethoxysilane (APTES), which also acted as the functional monomer in the imprinting system; in addition, to achieve one-pot synthesis, a fluorescent monomer was prepared by a simple reaction between fluorescein isothiocyanate (FITC) and APTES. The as-synthesized FMIP nanoparticles displayed high specificity and fast response time (<1 min) towards the target molecule. Environmental pH and buffer salt could affect the specific recognition behaviors of the FMIP nanoparticles. Such a simple catalyst-free synthetic technique could also be employed for the preparation of FMIP nanoparticles targeting other acidic molecules.

6.
RSC Adv ; 10(34): 20368-20373, 2020 May 26.
Article in English | MEDLINE | ID: mdl-35520410

ABSTRACT

3-Aminopropyltriethoxysilane (APTES) is a silane widely used to supply amino groups for further modifications on various materials, but it is less studied as a catalyst to catalyze sol-gel silica polymerization. Here, by using APTES as the catalyst instead of the conventional basic catalysts, a novel strategy was developed to prepare silica-based molecularly imprinted polymers (MIPs). Meanwhile, APTES was employed as the functional monomer to create imprinted nanocavities for specific recognition of target molecules. The as-synthesized MIP exhibited ultra-high recognition capability due to the elimination of the detrimental effect on the imprinting performance caused by the additional catalysts. The preparation process, specificity, pH effect, binding capacity and affinity of the MIP were studied in detail. The MIP microparticles could be packed into a solid phase extraction column for removing the target molecule in water efficiently, and the molecule could easily be enriched by 40 times. The interaction of the functional monomer and template was studied by the calculation method, giving a more clear understanding of the recognition behaviours of the imprinted polymers. The strategy could be extended not only to prepare highly specific MIPs for other small phosphoric molecules, but also for biomolecules e.g. phosphorylated peptides or proteins.

7.
Phys Chem Chem Phys ; 16(45): 24716-26, 2014 Dec 07.
Article in English | MEDLINE | ID: mdl-25315454

ABSTRACT

Atomic vacancies play an important role in the deformation and fracture processes of a metallic nanowire subjected to uniaxial tension. However, it is a great challenge to explore such evolution by experimental methods. Here, molecular dynamics simulations were used to study the deformation, fracture mechanism and mechanical character of gold nanowires with different atomic vacancies and sizes. Several valuable results were observed. Firstly, the statistical breaking position distributions showed two fracture styles of the gold nanowires. The small-sized gold nanowire exhibited a cluster rupture with disordered crystalline structures, and the breaking position appeared in the middle region, while the gold nanowire of large size exhibited an ordered slippage rupture and was apt to break at both ends. Secondly, the breaking position distribution of the large-sized gold nanowire was more sensitive to atomic vacancies than that of the small-sized gold nanowire. Thirdly, the mechanical strength could be improved by decreasing the gold nanowire size. Finally, small-sized gold nanowires had uncertain characteristics owing to the surface atom effects.

8.
Nanoscale Res Lett ; 6(1): 291, 2011 Apr 05.
Article in English | MEDLINE | ID: mdl-21711854

ABSTRACT

The failure of the metallic nanowire has raised concerns due to its applied reliability in nanoelectromechanical system. In this article, the breaking failure is studied for the [100], [110], and [111] single-crystal copper nanowires at different strain rates. The statistical breaking position distributions of the nanowires have been investigated to give the effects of strain rate and crystallographic orientation on micro-atomic fluctuation in the symmetric stretching of the nanowires. When the strain rate is less than 0.26% ps-1, macro-breaking position distributions exhibit the anisotropy of micro-atomic fluctuation. However, when the strain rate is larger than 3.54% ps-1, the anisotropy is not obvious because of strong symmetric shocks.

9.
Nanoscale ; 3(4): 1624-31, 2011 Apr.
Article in English | MEDLINE | ID: mdl-21350764

ABSTRACT

Defects in metallic nanowires have raised concerns about the applied reliability of the nanowires in nanoelectromechanical systems. In this paper, molecular dynamics simulations are used to study the deformation and breaking failure of the [100] single-crystal gold nanowires containing defects at different strain rates. The statistical breaking position distributions of the nanowires show mechanical shocks play a critical role in the deformation of nanowires at different strain rates, and deformation mechanism of the nanowire containing defects is based on a competition between shocks and defects in the deformation process of the nanowire. At low strain rate of 1.0% ps(-1), defect ratio of 2% has changed the deformation mechanism because micro-atomic fluctuation is in an equilibrium state. However, owing to strong symmetric shocks, the sensitivity of defects is not obvious before a defect ratio of 25% at high strain rate of 5.0% ps(-1).


Subject(s)
Gold/chemistry , Nanotubes/chemistry , Nanotubes/ultrastructure , Acceleration , Elastic Modulus , Materials Testing , Particle Size , Stress, Mechanical , Tensile Strength
10.
Nanoscale ; 2(12): 2818-25, 2010 Dec.
Article in English | MEDLINE | ID: mdl-20944863

ABSTRACT

The failure of the nanoscale metallic interface has raised concerns owing to the effect interfacial amalgamation has on its application in nanoelectronic devices. Single crystal copper [110] and [100], which are set as two components of [110]‖[100] nanocrystalline copper, are used to simulate the interfacial properties using molecular dynamics simulations. Repeated tension and compression cycles show that the two components of the interface can come into contact and separate without interfacial amalgamation. The [110]‖[100] interface could withstand momentary shocks of compression and heat produced by the momentary shocks. This property of the [110]‖[100] interface is dominated by crystalline orientations of interfacial structure, in comparison with [111]‖[100] and [111]‖[110] interfaces under the same conditions.


Subject(s)
Copper/chemistry , Nanoparticles/chemistry , Molecular Dynamics Simulation , Temperature
11.
Phys Chem Chem Phys ; 11(30): 6514-9, 2009 Aug 14.
Article in English | MEDLINE | ID: mdl-19809684

ABSTRACT

In this paper, molecular dynamics simulations have been conducted to study the mechanical stretching of copper nanowires which will finally lead to the formation of suspended liner atomic chains. A total of 2700 samples have been investigated to achieve a comprehensive understanding of the influence of temperature and orientation on the formation of linear atomic chains. Our results prove that linear atomic chains do exist for [100], [111] and [110] crystallographic directions. Stretching along the [111] direction exhibits a higher probability in forming the two-atom contact than that along the [110] and [100] directions. However, for longer linear atomic chains, there emerges a reversed trend. In addition, increasing temperature may decrease the formation probability for stretching along [111] and [110] directions, but this influence is less obvious for that along the [100] direction.


Subject(s)
Copper/chemistry , Nanowires/chemistry , Chemistry, Physical/methods , Computer Simulation , Crystallography, X-Ray/methods , Molecular Conformation , Nanotechnology/methods , Probability , Stress, Mechanical , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...