Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
J Cell Biol ; 184(4): 481-90, 2009 Feb 23.
Article in English | MEDLINE | ID: mdl-19221195

ABSTRACT

Current concepts of cell migration were established in regular two-dimensional (2D) cell culture, but the roles of topography are poorly understood for cells migrating in an oriented 3D fibrillar extracellular matrix (ECM). We use a novel micropatterning technique termed microphotopatterning (microPP) to identify functions for 1D fibrillar patterns in 3D cell migration. In striking contrast to 2D, cell migration in both 1D and 3D is rapid, uniaxial, independent of ECM ligand density, and dependent on myosin II contractility and microtubules (MTs). 1D and 3D migration are also characterized by an anterior MT bundle with a posterior centrosome. We propose that cells migrate rapidly through 3D fibrillar matrices by a 1D migratory mechanism not mimicked by 2D matrices.


Subject(s)
Cell Movement , Extracellular Matrix/metabolism , Animals , Cell Culture Techniques , Fibroblasts/metabolism , Mice , Myosins/metabolism , NIH 3T3 Cells
2.
Biophys J ; 93(5): 1797-808, 2007 Sep 01.
Article in English | MEDLINE | ID: mdl-17483177

ABSTRACT

Mathematical models of cell migration based on persistent random walks have been successfully applied to describe the motility of several cell types. However, the migration of slowly moving connective-tissue cells, such as fibroblasts, is difficult to observe experimentally and difficult to describe theoretically. We identify two primary sources of this difficulty. First, cells such as fibroblasts tend to migrate slowly and change shape during migration. This makes accurate determination of cell position difficult. Second, the cell population is considerably heterogeneous with respect to cell speed. Here we develop a method for fitting connective-tissue cell migration data to persistent random walk models, which accounts for these two significant sources of error and enables accurate determination of the cell motility parameters. We demonstrate the usefulness of this method for modeling both isotropic cell motility and biased cell motility, where the migration of a population of cells is influenced by a gradient in a surface-bound adhesive peptide. This method can discern differences in the motility of populations of cells at different points along the peptide gradient and can therefore be used as a tool to quantify the effects of peptide concentration and gradient magnitude on cell migration.


Subject(s)
Cell Movement , Connective Tissue/metabolism , Anisotropy , Cell Adhesion , Chemotaxis , Fibroblasts/metabolism , Humans , Models, Statistical , Models, Theoretical , Peptides/chemistry , Reproducibility of Results , Signal Transduction , Time Factors
3.
Anal Biochem ; 363(2): 175-84, 2007 Apr 15.
Article in English | MEDLINE | ID: mdl-17339030

ABSTRACT

The activation of surfaces by covalent attachment of bioactive moieties is an important strategy for improving the performance of biomedical materials. Such techniques have also been used as tools to study cellular responses to particular chemistries of interest. The creation of gradients of covalently bound chemistries is a logical extension of this technique. Gradient surfaces may permit the rapid screening of a large range of concentrations in a single experiment. In addition, the biological response to the gradient itself may provide new information on receptor requirements and cell signaling. The current work describes a rapid and flexible technique for the covalent addition of bioactive peptide gradients to a surface or gel and a simple fluorescence technique for assaying the gradient. In this technique, bioactive peptides with a terminal cysteine are bound via a heterobifunctional coupling agent to primary amine-containing surfaces and gels. A gradient in the coupling agent is created on the surfaces or gels by varying the residence time of the coupling agent across the surface or gel, thereby controlling the extent of reaction. We demonstrate this technique using poly(l-lysine)-coated glass surfaces and fibrin gels. Once the surface or gel has been activated by the addition of the coupling agent gradient, the bioactive peptide is added. Quantitation of the gradient is achieved by measuring the reaction kinetics of the coupling agent with the surface or gel of interest. This can be done either by fluorescently labeling the coupling agent (in the case of surfaces) or by spectrophotometrically detecting the release of pyridine-2-thione, which is produced when the thiol-reactive portion of the coupling agent reacts. By these methods, we can obtain reasonably precise estimates for the peptide gradients without using expensive spectroscopic or radiolabeling techniques. Validation with changes in fibroblast cell migration behavior across a bioactive peptide gradient illustrates preservation of peptide function as well as the usefulness of this technique.


Subject(s)
Peptides/chemistry , Peptides/metabolism , Cell Adhesion/drug effects , Cell Movement/drug effects , Cells, Cultured , Fibrin/metabolism , Gels , Humans , Kinetics , Male , Microscopy, Fluorescence , Peptides/pharmacology , Surface Properties
4.
J Biomed Mater Res A ; 69(2): 305-13, 2004 May 01.
Article in English | MEDLINE | ID: mdl-15058003

ABSTRACT

The introduction of tissue engineering strategies for the repair and replacement of human body components extends the application and importance of biomaterials. Implanted biomaterials frequently evoke inflammatory responses that are complex and not well understood at present. The goals of this work were to develop improved measurement methods for the quantification of cellular inflammatory responses to biomaterials and obtain data that lead to an enhanced understanding of the ways in which the body responds to the introduction of biomaterials. To evaluate the biocompatibility of materials, we established a system that allows for the analysis and quantitation of cellular inflammatory responses in vitro. In this study, the inflammatory responses of murine macrophages (RAW 264.7) were analyzed. The cells were incubated with polymethylmethacrylate (PMMA) microspheres in the presence and absence of lipopolysaccharide (LPS) at 8 and 18 h. The analysis of the genetic material obtained from the cells was quantitated using real-time reverse transcription polymerase chain reaction (RT-PCR). The cell populations treated with LPS or PMMA microspheres singly resulted in an elevation of cytokine levels compared to the untreated control. LPS resulted in a 258-fold increase, while PMMA resulted in an 87.9-fold increase at 8 h. RAW 264.7 cells incubated with LPS and PMMA particles demonstrated a synergistic effect by producing a marked increase in the level of cytokine expression, 336-fold greater than that of the untreated control at 8 h. Fluorescence microscopy studies that assessed cellular viability were also performed and are consistent with the RT-PCR results.


Subject(s)
Inflammation/diagnosis , Macrophages/metabolism , RNA, Messenger/metabolism , Animals , DNA/metabolism , Fluorescent Dyes , Gene Dosage , Inflammation/metabolism , Interleukin-1/biosynthesis , Interleukin-1/genetics , Mice , Microscopy, Fluorescence , Reverse Transcriptase Polymerase Chain Reaction , Temperature , Tumor Necrosis Factor-alpha/biosynthesis , Tumor Necrosis Factor-alpha/genetics
5.
J Biomed Mater Res A ; 68(4): 628-39, 2004 Mar 15.
Article in English | MEDLINE | ID: mdl-14986318

ABSTRACT

To improve the effectiveness of calcium phosphate cement (CPC), we have developed a method to seed osteoblasts into the cement. CPC powder is mixed with water to form a paste that can be shaped to fit a bone defect in situ. The paste hardens in 30 min, reacts to form hydroxyapatite, and is replaced with new bone. Reacted CPC is biocompatible but unreacted CPC paste was found to have toxic effects when placed on cell monolayers (MC3T3-E1 cells). In contrast, when cells were indirectly exposed to CPC paste using a porous membrane or by placing a coverslip containing adherent cells onto a bed of CPC paste, the unreacted CPC was nontoxic. These results suggested that gel encapsulation of the cells might protect them from the CPC paste. Thus, cells were encapsulated in alginate beads (3.6-mm diameter), mixed with CPC paste, and incubated overnight. Both vital staining (calcein-AM and ethidium homodimer-1) and the Wst-1 assay (measures dehydrogenase activity) showed that cell survival in alginate beads that were mixed with CPC was similar to survival in untreated control beads. These results suggest that gel encapsulation could be used as a mechanism to protect cells for seeding into CPC.


Subject(s)
Alginates , Bone Substitutes , Calcium Phosphates , Glucuronic Acid , Hexuronic Acids , Osteoblasts/physiology , Animals , Mice , Silicone Oils
6.
J Orthop Res ; 20(3): 473-82, 2002 May.
Article in English | MEDLINE | ID: mdl-12038620

ABSTRACT

We have assessed the biocompatibility of a new composite bone graft consisting of calcium phosphate cement (CPC) and poly(lactide-co-glycolide) (PLGA) microspheres (approximate diameter of 0.18-0.36 mm) using cell culture techniques. CPC powder is mixed with PLGA microspheres and water to yield a workable paste that could be sculpted to fit the contours of a wound. The cement then hardens into a matrix of hydroxyapatite microcrystals containing PLGA microspheres. The rationale for this design is that the microspheres will initially stabilize the graft but can then degrade to leave behind macropores for colonization by osteoblasts. The CPC matrix could then be resorbed and replaced with new bone. In the present study, osteoblast-like cells (MC3T3-E1 cells) were seeded onto graft specimens and evaluated with fluorescence microscopy, environmental scanning electron microscopy and the Wst-1 assay (an enzymatic assay for mitochondrial dehydrogenase activity). Cells were able to adhere, attain a normal morphology, proliferate and remain viable when cultured on the new composite graft (CPC-PLGA) or on a control graft (CPC alone). These results suggest that our new cement consisting of CPC and PLGA microspheres is biocompatible. This is the first time that a 'polymer-in-mineral' (PLGA microspheres dispersed in a CPC matrix) cement has been formulated that is moldable, resorbable and that can form macropores after the cement has set.


Subject(s)
Biocompatible Materials/pharmacology , Bone Cements/analysis , Bone Substitutes/chemistry , Bone Substitutes/pharmacology , Calcium Phosphates/analysis , Microspheres , Osteoblasts/drug effects , Polyglactin 910 , Animals , Cell Adhesion , Cell Division , Cell Line , Cell Survival , Microscopy, Electron, Scanning , Microscopy, Fluorescence , Mitochondria/enzymology , Osteoblasts/cytology , Osteoblasts/physiology , Oxidoreductases/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...