Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Materials (Basel) ; 17(5)2024 Feb 22.
Article in English | MEDLINE | ID: mdl-38473482

ABSTRACT

Concrete is a versatile material widely used in modern construction. However, concrete is also subject to freeze-thaw damage, which can significantly reduce its mechanical properties and lead to premature failure. Therefore, the objective of this study was to assess the laboratory performance and freeze-thaw damage characteristics of a common mix proportion of concrete based on compressive mechanical tests and acoustic technologies. Freeze-thaw damage characteristics of the concrete were evaluated via compressive mechanical testing, mass loss analysis, and ultrasonic pulse velocity testing. Acoustic emission (AE) technology was utilized to assess the damage development status of the concrete. The outcomes indicated that the relationships between cumulative mass loss, compressive strength, and ultrasonic wave velocity and freeze-thaw cycles during the freezing-thawing process follow a parabola fitting pattern. As the freeze-thaw damage degree increased, the surface presented a trend of "smooth intact surface" to "surface with dense pores" to "cement mortar peeling" to "coarse aggregates exposed on a large area". Therefore, there was a rapid decrease in the mass loss after a certain number of freeze-thaw cycles. According to the three stages divided by the stress-AE parameter curve, the linear growth stage shortens, the damage accumulation stage increases, and the failure stage appears earlier with the increase in freeze-thaw cycles. In conclusion, the application of a comprehensive understanding of freeze-thaw damage characteristics of concrete based on compressive properties and acoustic parameters would enhance the evaluation of the performance degradation and damage status for concrete structures.

2.
Materials (Basel) ; 16(21)2023 Oct 25.
Article in English | MEDLINE | ID: mdl-37959449

ABSTRACT

The ultrasonic test is a promising non-destructive testing technique for evaluating the properties of asphalt mixtures. To investigate the applicability and reliability of ultrasonic testing technology (UTT) in evaluating the performance of asphalt mixtures, ultrasonic tests, indirect tensile tests, compression tests, and dynamic modulus tests were carried out at various temperatures. Subsequently, the distribution characteristics of ultrasonic traveling parameters for asphalt mixtures were analyzed. The variation of ultrasonic pulse velocity and amplitude in dry and wet states with temperature was studied. Then, the correlation between the ultrasonic parameters and both the volume parameters and the mechanical performance parameters of asphalt mixtures was revealed, and the functional relationship between ultrasonic pulse velocity and compressive strength was established. Finally, the reliability of predicting high-frequency dynamic modulus by ultrasonic velocity was verified. The laboratory tests and analysis results indicate that both ultrasonic pulse velocity and amplitude in dry and wet conditions show a decreasing trend with an increase in temperature. Ultrasonic parameters are greatly influenced by asphalt content and mineral aggregate content of 9.5~13.2 mm and 13.2~16 mm. The dynamic modulus at a high-frequency load can be predicted by using ultrasonic velocity, and predicting the results for OGFC and SMA mixtures deduced by using the UPV at a high-frequency load have higher reliability.

3.
Polymers (Basel) ; 15(15)2023 Aug 03.
Article in English | MEDLINE | ID: mdl-37571183

ABSTRACT

With the increase in highway traffic volume, many waste tires are being produced, which puts serious pressure on the global ecological environment. Processing waste tires into powder and adding them to asphalt is an important and effective way to solve this noticeable environmental challenge. In this paper, to produce ground tire rubber (GTR) and styrene-butadiene-styrene (SBS) compound-modified asphalt, GTR was put into SBS-modified asphalt (GTRSA). Subsequently, some ordinary property tests, frequency sweep tests, and multiple stress creep recovery tests were conducted to investigate the conventional properties and rheological properties of GTRSA. Moreover, the 2S2P1D (two springs, two parabolic elements, and one dashpot) model was adopted to analyze the consequences of adding GTR content on the rheological properties of GTRSA. Finally, the Pearson correlation coefficient was employed to reveal the connection between the conventional properties and the rheological properties. The results show that GTR has a great impact on improving the rutting resistance, thermo-sensitive performance, shear resistance capability, stress sensitivity, and creep recovery performance of GTRSA. Adding 20% GTR can improve the creep recovery rate to 80.8%. The 5 °C ductility index suggests that GTR makes a difference to the low-temperature properties. The rheological properties and conventional properties had a strong linear link.

4.
IEEE Trans Pattern Anal Mach Intell ; 45(5): 5448-5460, 2023 May.
Article in English | MEDLINE | ID: mdl-36049011

ABSTRACT

Due to the rise of spherical cameras, monocular 360 ° depth estimation becomes an important technique for many applications (e.g., autonomous systems). Thus, state-of-the-art frameworks for monocular 360 ° depth estimation such as bi-projection fusion in BiFuse are proposed. To train such a framework, a large number of panoramas along with the corresponding depth ground truths captured by laser sensors are required, which highly increases the cost of data collection. Moreover, since such a data collection procedure is time-consuming, the scalability of extending these methods to different scenes becomes a challenge. To this end, self-training a network for monocular depth estimation from 360 ° videos is one way to alleviate this issue. However, there are no existing frameworks that incorporate bi-projection fusion into the self-training scheme, which highly limits the self-supervised performance since bi-projection fusion can leverage information from different projection types. In this paper, we propose BiFuse++ to explore the combination of bi-projection fusion and the self-training scenario. To be specific, we propose a new fusion module and Contrast-Aware Photometric Loss to improve the performance of BiFuse and increase the stability of self-training on real-world videos. We conduct both supervised and self-supervised experiments on benchmark datasets and achieve state-of-the-art performance.

SELECTION OF CITATIONS
SEARCH DETAIL
...