Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.747
Filter
2.
Virol J ; 21(1): 126, 2024 Jun 03.
Article in English | MEDLINE | ID: mdl-38831352

ABSTRACT

BACKGROUND: Severe fever with thrombocytopenia syndrome (SFTS) is an emerging infectious disease caused by severe fever with thrombocytopenia syndrome virus (SFTSV). Previous studies have indicated that SFTS patients have a high mortality rate, which may be related to cytokine storm and immune dysfunction. In our study, we analyzed differences in cytokines and lymphocyte subsets between severe and non-severe SFTS patients, with the aim of identifying predictors of severity. METHODS: We retrospectively analyzed demographic characteristics, clinical data, cytokine profiles, and lymphocyte subsets from 96 laboratory confirmed SFTS patients between April 2021 and August 2023. RESULTS: A total of 96 SFTS patients were enrolled, with a mean age of 65.05 (± 7.92) years old. According to our grouping criteria, 35 (36.5%) of these patients were classified as severe group, while 61 (63.5%) were classified as non-severe group. Univariate analysis revealed that age, interleukin-6 (IL-6), interleukin-8 (IL-8), interleukin-10 (IL-10), interferon-α (IFN-α), CD4 + T cell, and CD8 + T cell counts were risk predictors for the severity of SFTS. Further multivariable logistic regression analysis confirmed age, IL-6 levels, and CD4 + T cell counts as independent predictors of SFTS severity. CONCLUSIONS: Severe SFTS patients may experience cytokine storms and immune dysfunction. Aging, elevated levels of IL-6, and decreased CD4 + T cell count may serve as independent predictors for the severity of SFTS.


Subject(s)
Cytokines , Lymphocyte Subsets , Phlebovirus , Severe Fever with Thrombocytopenia Syndrome , Severity of Illness Index , Humans , Male , Female , Severe Fever with Thrombocytopenia Syndrome/immunology , Severe Fever with Thrombocytopenia Syndrome/virology , Aged , Middle Aged , Cytokines/blood , Retrospective Studies , Phlebovirus/immunology , Lymphocyte Subsets/immunology
3.
Front Immunol ; 15: 1384946, 2024.
Article in English | MEDLINE | ID: mdl-38835784

ABSTRACT

Breast cancer has a high incidence and a heightened propensity for metastasis. The absence of precise targets for effective intervention makes it imperative to devise enhanced treatment strategies. Exosomes, characterized by a lipid bilayer and ranging in size from 30 to 150 nm, can be actively released by various cells, including those in tumors. Exosomes derived from distinct subsets of immune cells have been shown to modulate the immune microenvironment within tumors and influence breast cancer progression. In addition, tumor-derived exosomes have been shown to contribute to breast cancer development and progression and may become a new target for breast cancer immunotherapy. Tumor immunotherapy has become an option for managing tumors, and exosomes have become therapeutic vectors that can be used for various pathological conditions. Edited exosomes can be used as nanoscale drug delivery systems for breast cancer therapy, contributing to the remodeling of immunosuppressive tumor microenvironments and influencing the efficacy of immunotherapy. This review discusses the regulatory role of exosomes from different cells in breast cancer and the latest applications of exosomes as nanoscale drug delivery systems and immunotherapeutic agents in breast cancer, showing the development prospects of exosomes in the clinical treatment of breast cancer.


Subject(s)
Breast Neoplasms , Exosomes , Immunotherapy , Tumor Microenvironment , Exosomes/immunology , Exosomes/metabolism , Humans , Breast Neoplasms/therapy , Breast Neoplasms/immunology , Female , Immunotherapy/methods , Tumor Microenvironment/immunology , Animals , Drug Delivery Systems
4.
Front Oncol ; 14: 1380527, 2024.
Article in English | MEDLINE | ID: mdl-38841161

ABSTRACT

The detection rate of ground glass nodules (GGNs) has increased in recent years because of their malignant potential but relatively indolent biological behavior; thus, correct GGN recognition and management has become a research focus. Many scholars have explored the underlying mechanism of the indolent progression of GGNs from several perspectives, such as pathological type, genomic mutational characteristics, and immune microenvironment. GGNs have different major mutated genes at different stages of development; EGFR mutation is the most common mutation in GGNs, and p53 mutation is the most abundant mutation in the invasive stage of GGNs. Pure GGNs have fewer genomic alterations and a simpler genomic profile and exhibit a gradually evolving genomic mutation profile as the pathology progresses. Compared to advanced lung adenocarcinoma, GGN lung adenocarcinoma has a higher immune cell percentage, is under immune surveillance, and has less immune escape. However, as the pathological progression and solid component increase, negative immune regulation and immune escape increase gradually, and a suppressive immune environment is established gradually. Currently, regular computer tomography monitoring and surgery are the main treatment strategies for persistent GGNs. Stereotactic body radiotherapy and radiofrequency ablation are two local therapeutic alternatives, and systemic therapy has been progressively studied for lung cancer with GGNs. In the present review, we discuss the characterization of the multidimensional molecular evolution of GGNs that could facilitate more precise differentiation of such highly heterogeneous lesions, laying a foundation for the development of more effective individualized treatment plans.

5.
Biochem Pharmacol ; : 116347, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38852646

ABSTRACT

Human epidermal growth factor receptor 2 positive (HER2 + ) breast cancer (BC) tends to metastasize and has a bad prognosis due to its high malignancy and rapid progression. Inositol polyphosphate 4-phosphatase isoenzymes type II (INPP4B) plays unequal roles in the development of various cancer. However, the function of INPP4B in HER2 + BC has not been elucidated. Here we found that INPP4B expression was significantly lower in HER2 + BC and positively correlated with the prognosis by bioinformatics and tissue immunofluorescence analyses. Overexpression of INPP4B inhibited cell proliferation, migration, and growth of xenografts in HER2 + BC cells. Conversely, depletion of INPP4B reversed these effects and activated the PDK1/AKT and Wnt/ß-catenin signaling pathways to promote epithelial-mesenchymal transition (EMT) progression. Moreover, INPP4B overexpression blocked epidermal growth factor (EGF) -induced cell proliferation, migration and EMT progression, whereas INPP4B depletion antagonized HER2 depletion in reduction of cell proliferation and migration of HER2 + BC cells. Additionally, Lapatinib (LAP) inhibited HER2 + BC cell survival, proliferation and migration, and its effect was further enhanced by overexpression of INPP4B. In summary, our results illustrate that INPP4B suppresses HER2 + BC growth, migration and EMT, and its expression level affects patient outcome, further providing new insights into clinical practice.

6.
Br J Pharmacol ; 2024 Jun 09.
Article in English | MEDLINE | ID: mdl-38853468

ABSTRACT

BACKGROUND AND PURPOSE: Airway epithelial cells (AECs) regulate the activation of epithelial-mesenchymal trophic units (EMTUs) during airway remodelling through secretion of signalling mediators. However, the major trigger and the intrinsic pathogenesis of airway remodelling is still obscure. EXPERIMENTAL APPROACH: The differing expressed genes in airway epithelia related to airway remodelling were screened and verified by RNA-sequencing and signalling pathway analysis. Then, the effects of increased cathepsin K (CTSK) in airway epithelia on airway remodelling and EMTU activation were identified both in vitro and in vivo, and the molecular mechanism was elucidated in the EMTU model. The potential of CTSK as an an effective biomarker of airway remodelling was analysed in an asthma cohort of differing severity. Finally, an inhibitor of CTSK was administered for potential therapeutic intervention for airway remodelling in asthma. KEY RESULTS: The expression of CTSK in airway epithelia increased significantly along with the development of airway remodelling in a house dust mite (HDM)-stressed asthma model. Increased secretion of CTSK from airway epithelia induced the activation of EMTUs by activation of the PAR2-mediated pathway. Blockade of CTSK inhibited EMTU activation and alleviated airway remodelling as an effective intervention target of airway remodelling. CONCLUSION AND IMPLICATIONS: Increased expression of CTSK in airway epithelia is involved in the development of airway remodelling in asthma through EMTU activation, mediated partly through the PAR2-mediated signalling pathway. CTSK is a potential biomarker for airway remodelling, and may also be a useful intervention target for airway remodelling in asthma patients.

7.
J Cardiothorac Surg ; 19(1): 306, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38822410

ABSTRACT

Peripheral venous catheter fracture with cardiovascular embolization is a rare but potentially serious complication. Herein, we report a case of peripheral venous catheter fracture with embolization in right ventricle in a preterm infant. The catheter fragment was successfully removed by surgical procedure via median sternotomy under cardiopulmonary bypass(CPB).We hope this case will increase awareness of this rare complication and improve cannulation safety.


Subject(s)
Catheterization, Peripheral , Device Removal , Infant, Premature , Humans , Infant, Newborn , Catheterization, Peripheral/methods , Device Removal/methods , Male , Equipment Failure , Heart Ventricles/surgery , Female
8.
J Psychiatr Res ; 176: 1-8, 2024 May 30.
Article in English | MEDLINE | ID: mdl-38824877

ABSTRACT

Transcranial alternating current stimulation (tACS) is an emerging non-invasive neuromodulation treatment for major depressive disorder (MDD), but its mechanism remains unclear. Therefore, we evaluated the effects of tACS on event-related potentials (ERP) based on a randomized controlled study. All patients were divided into two groups to receive either 20 sessions 77.5Hz-tACS or 20 sessions of sham stimulation during 4 weeks. The Hamilton Depression Rating Scale for Depression -17 item (HAMD-17) and ERP during face-word Stroop task were recorded before and after the treatment (the fourth weekend). Our findings indicate a significant alleviation of depressive symptoms after tACS. For the behavioral performance, sham group showed a significant decrease in reaction time to the sad incongruent condition and an increase in accuracy to the happy condition. The active group showed an increase in accuracy to the incongruent condition. ERP analysis revealed that tACS significantly shortened the latency of P2 to incongruent condition, decreased the amplitude and prolonged the latency of N2 to negative condition. These ERP alterations suggest a potential rectification of negative bias and enhancement of cognitive functioning in patients with MDD, offering insights into the antidepressant mechanisms of tACS.

9.
Article in English | MEDLINE | ID: mdl-38833406

ABSTRACT

Proper monitoring of anesthesia stages can guarantee the safe performance of clinical surgeries. In this study, different anesthesia stages were classified using near-infrared spectroscopy (NIRS) signals with machine learning. The cerebral hemodynamic variables of right proximal oxyhemoglobin (HbO2) in maintenance (MNT), emergence (EM) and the consciousness (CON) stage were collected and then the differences between the three stages were compared by phase-amplitude coupling (PAC). Then combined with time-domain including linear (mean, standard deviation, max, min and range), nonlinear (sample entropy) and power in frequency-domain signal features, feature selection was performed and finally classification was performed by support vector machine (SVM) classifier. The results show that the PAC of the NIRS signal was gradually enhanced with the deepening of anesthesia level. A good three-classification accuracy of 69.27% was obtained, which exceeded the result of classification of any single category feature. These results indicate the fesibility of NIRS signals in performing three or even more anesthesia stage classifications, providing insight into the development of new anesthesia monitoring modalities.

10.
Quant Imaging Med Surg ; 14(6): 3997-4014, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38846272

ABSTRACT

Background: The cognitive decline induced by Alzheimer's disease (AD) is closely related to changes in hippocampal structure captured by magnetic resonance imaging (MRI). To accurately analyze the morphological changes of the hippocampus induced by AD, it is necessary to establish a one-to-one surface correspondence to compare the morphological measurements across different hippocampal surfaces. However, most existing landmark-based registration methods cannot satisfy both landmark matching and diffeomorphism under large deformations. To address these challenges, we propose a landmark-based spherical registration method via quasi-conformal mapping to establish a one-to-one correspondence between different hippocampal surfaces. Methods: In our approach, we use the eigen-graph of the hippocampal surface to extract the intrinsic and unified landmarks of all the hippocampal surfaces and then realize the parameterization process from the hippocampal surface to a unit sphere according to the barycentric coordinate theory and the triangular mesh optimization algorithm. Finally, through the local stereographic projection, the alignment of the landmarks is achieved based on the quasi-conformal mapping on a two-dimensional (2D) plane under the constraints of Beltrami coefficients which can effectively control the topology distortion. Results: We verified the proposed registration method on real hippocampus data from the Alzheimer's Disease Neuroimaging Initiative (ADNI) database and created AD and normal control (NC) groups. Our registration algorithm achieved an area distortion index (ADI) of 0.4362e-4±0.7800e-5 in the AD group and 0.5671e-4±0.602e-5 in the NC group, and it achieved an angle distortion index (Eangle) of 0.6407±0.0258 in the AD group and 0.6271±0.0194 in the NC group. The accuracy of support vector machine (SVM) classification for the AD vs. NC groups based on the morphological features extracted from the registered hippocampal surfaces reached 94.2%. Conclusions: This landmark-based spherical quasi-conformal mapping for hippocampal surface registration algorithm can maintain precise alignment of the landmarks and bijectivity in the presence of large deformation.

11.
Work ; 2024 Jun 04.
Article in English | MEDLINE | ID: mdl-38848149

ABSTRACT

BACKGROUND: Varied noise environments, such as impulse noise and steady-state noise, may induce distinct patterns of hearing impairment among personnel exposed to prolonged noise. However, comparative studies on these effects remain limited. OBJECTIVE: This study aims to delineate the different characteristics of hearing loss in workers exposed to steady-state noise and impulse noise. METHODS: As of December 2020, 96 workers exposed to steady-state noise and 177 workers exposed to impulse noise were assessed. Hearing loss across various frequencies was measured using pure tone audiometry and distortion product otoacoustic emission (DPOAE) audiometry. RESULTS: Both groups of workers exposed to steady-state noise and impulse noise exhibited high frequencies hearing loss. The steady-state noise group displayed significantly greater hearing loss at lower frequencies in the early stages, spanning 1- 5 years of work (P < 0.05). Among individuals exposed to impulse noise for extended periods (over 10 years), the observed hearing loss surpassed that of the steady-state noise group, displaying a statistically significant difference (P < 0.05). CONCLUSION: Hearing loss resulting from both steady-state noise and impulse noise predominantly occurs at high frequencies. Early exposure to steady-state noise induces more pronounced hearing loss at speech frequencies compared to impulse noise.

12.
J Magn Reson Imaging ; 2024 Jun 08.
Article in English | MEDLINE | ID: mdl-38850180

ABSTRACT

BACKGROUND: Pathological complete response (pCR) is an essential criterion for adjusting follow-up treatment plans for patients with breast cancer (BC). The value of the visual geometry group and long short-term memory (VGG-LSTM) network using time-series dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) for pCR identification in BC is unclear. PURPOSE: To identify pCR to neoadjuvant chemotherapy (NAC) using deep learning (DL) models based on the VGG-LSTM network. STUDY TYPE: Retrospective. POPULATION: Center A: 235 patients (47.7 ± 10.0 years) were divided 7:3 into training (n = 164) and validation set (n = 71). Center B: 150 patients (48.5 ± 10.4 years) were used as test set. FIELD STRENGTH/SEQUENCE: 3-T, T2-weighted spin-echo sequence imaging, and gradient echo DCE sequence imaging. ASSESSMENT: Patients underwent MRI examinations at three sequential time points: pretreatment, after three cycles of treatment, and prior to surgery, with tumor regions of interest manually delineated. Histopathology was the gold standard. We used VGG-LSTM network to establish seven DL models using time-series DCE-MR images: pre-NAC images (t0 model), early NAC images (t1 model), post-NAC images (t2 model), pre-NAC and early NAC images (t0 + t1 model), pre-NAC and post-NAC images (t0 + t2 model), pre-NAC, early NAC and post-NAC images (t0 + t1 + t2 model), and the optimal model combined with the clinical features and imaging features (combined model). The models were trained and optimized on the training and validation set, and tested on the test set. STATISTICAL TESTS: The DeLong, Student's t-test, Mann-Whitney U, Chi-squared, Fisher's exact, Hosmer-Lemeshow tests, decision curve analysis, and receiver operating characteristics analysis were performed. P < 0.05 was considered significant. RESULTS: Compared with the other six models, the combined model achieved the best performance in the test set yielding an AUC of 0.927. DATA CONCLUSION: The combined model that used time-series DCE-MR images, clinical features and imaging features shows promise for identifying pCR in BC. TECHNICAL EFFICACY: Stage 4.

13.
Ecotoxicol Environ Saf ; 280: 116552, 2024 Jun 07.
Article in English | MEDLINE | ID: mdl-38850694

ABSTRACT

In this study, a six-month pot experiment was conducted to explore the effects of nanoparticles (NPs), including CeO2, TiO2 and SiO2 NPs at 200 and 800 mg/kg, on the growth and quality of model medicinal plant Salvia miltiorrhiza. A control group was implemented without the application of NPs. Results showed that NPs had no significant effect on root biomass. Treatment with 200 mg/kg of SiO2 NPs significantly increased the total tanshinone content by 44.07 %, while 200 mg/kg of CeO2 NPs were conducive to a 22.34 % increase in salvianolic acid B content. Exposure to CeO2 NPs induced a substantial rise in the MDA content in leaves (176.25 % and 329.15 % under low and high concentration exposure, respectively), resulting in pronounced oxidative stress. However, TiO2 and SiO2 NPs did not evoke a robust response from the antioxidant system. Besides, high doses of CeO2 NP-amended soil led to reduced nitrogen, phosphorus and potassium contents. Furthermore, the NP amendment disturbed the carbon and nitrogen metabolism in the plant rhizosphere and reshaped the rhizosphere microbial community structure. The application of CeO2 and TiO2 NPs promoted the accumulation of metabolites with antioxidant functions, such as D-altrose, trehalose, arachidonic acid and ergosterol. NPs displayed a notable suppressive effect on pathogenic fungi (Fusarium and Gibberella) in the rhizosphere, while enriching beneficial taxa with disease resistance, heavy metal antagonism and plant growth promotion ability (Lysobacter, Streptomycetaceae, Bacillaceae and Hannaella). Correlation analysis indicated the involvement of rhizosphere microorganisms in plant adaptation to NP amendments. NPs regulate plant growth and quality by altering soil properties, rhizosphere microbial community structure, and influencing plant and rhizosphere microbe metabolism. These findings were beneficial to deepening the understanding of the mechanism by which NPs affect medicinal plants.

14.
Eur J Med Res ; 29(1): 311, 2024 Jun 06.
Article in English | MEDLINE | ID: mdl-38845036

ABSTRACT

OBJECTIVE: Our study aimed to determine whether there exists an association between low-grade systemic inflammation, as measured by serum C-reactive protein (CRP), and the risk of lower-extremity deep venous thrombosis (LEDVT) in patients with primary intracerebral hemorrhage (ICH). METHODS: This observational study was retrospectively conducted on patients with primary ICH who were presented to two tertiary medical centers between January 2021 and August 2022. The primary outcome was detecting LEDVT occurrence within 14 days from the onset of the acute ICH episode. Weighted logistic regression and restricted cubic spline models were employed to estimate the association between CRP and LEDVT following 1:1 propensity score matching (PSM). RESULTS: Of the 538 patients with primary ICH who met the inclusion criteria, 76 (14.13%) experienced LEDVT. Based on the cut-off levels of CRP measured upon admission from the receiver operating characteristic (ROC) curve, patients with primary ICH were categorized into two groups: (i) CRP < 1.59 mg/L and (ii) CRP ≥ 1.59 mg/L. After 1:1 PSM, the LEDVT events occurred in 24.6% of patients with CRP ≥ 1.59 mg/L and 4.1% of patients with CRP < 1.59 mg/L (P < 0.001). ROC curve revealed the area under the ROC curve of 0.717 [95% confidence interval (CI) 0.669-0.761, P < 0.001] for CRP to predict LEDVT with a sensitivity of 85.71% and specificity of 56.29%. After adjusting for all confounding variables, the occurrence of LEDVT in ICH patients with higher CRP levels (≥ 1.59 mg/L) was 10.8 times higher compared to those with lower CRP levels (95% CI 4.5-25.8, P < 0.001). A nonlinear association was observed between CRP and an increased risk of LEDVT in the fully adjusted model (P for overall < 0.001, P for nonlinear = 0.001). The subgroup results indicated a consistent positive link between CRP and LEDVT events following primary ICH. CONCLUSIONS: Higher initial CRP levels (CRP as a dichotomized variable) in patients with primary ICH are significantly associated with an increased risk of LEDVT and may help identify high-risk patients with LEDVT. Clinicians should be vigilant to enable early and effective intervention in patients at high risk of LEDVT.


Subject(s)
C-Reactive Protein , Cerebral Hemorrhage , Lower Extremity , Venous Thrombosis , Humans , C-Reactive Protein/metabolism , C-Reactive Protein/analysis , Male , Female , Venous Thrombosis/blood , Venous Thrombosis/etiology , Cerebral Hemorrhage/blood , Cerebral Hemorrhage/etiology , Middle Aged , Lower Extremity/blood supply , Retrospective Studies , Aged , Biomarkers/blood , ROC Curve , Risk Factors
15.
Front Endocrinol (Lausanne) ; 15: 1362085, 2024.
Article in English | MEDLINE | ID: mdl-38752174

ABSTRACT

Background: Previous studies have identified several genetic and environmental risk factors for chronic kidney disease (CKD). However, little is known about the relationship between serum metals and CKD risk. Methods: We investigated associations between serum metals levels and CKD risk among 100 medical examiners and 443 CKD patients in the medical center of the First Hospital Affiliated to China Medical University. Serum metal concentrations were measured using inductively coupled plasma mass spectrometry (ICP-MS). We analyzed factors influencing CKD, including abnormalities in Creatine and Cystatin C, using univariate and multiple analysis such as Lasso and Logistic regression. Metal levels among CKD patients at different stages were also explored. The study utilized machine learning and Bayesian Kernel Machine Regression (BKMR) to assess associations and predict CKD risk based on serum metals. A chained mediation model was applied to investigate how interventions with different heavy metals influence renal function indicators (creatinine and cystatin C) and their impact on diagnosing and treating renal impairment. Results: Serum potassium (K), sodium (Na), and calcium (Ca) showed positive trends with CKD, while selenium (Se) and molybdenum (Mo) showed negative trends. Metal mixtures had a significant negative effect on CKD when concentrations were all from 30th to 45th percentiles compared to the median, but the opposite was observed for the 55th to 60th percentiles. For example, a change in serum K concentration from the 25th to the 75th percentile was associated with a significant increase in CKD risk of 5.15(1.77,8.53), 13.62(8.91,18.33) and 31.81(14.03,49.58) when other metals were fixed at the 25th, 50th and 75th percentiles, respectively. Conclusions: Cumulative metal exposures, especially double-exposure to serum K and Se may impact CKD risk. Machine learning methods validated the external relevance of the metal factors. Our study highlights the importance of employing diverse methodologies to evaluate health effects of metal mixtures.


Subject(s)
Renal Insufficiency, Chronic , Humans , Renal Insufficiency, Chronic/blood , Renal Insufficiency, Chronic/epidemiology , Renal Insufficiency, Chronic/etiology , Renal Insufficiency, Chronic/chemically induced , Female , Male , Middle Aged , Models, Theoretical , Adult , Selenium/blood , Risk Factors , China/epidemiology , Metals, Heavy/blood , Metals, Heavy/adverse effects , Aged , Environmental Exposure/adverse effects , Metals/blood , Metals/adverse effects , Machine Learning , Cystatin C/blood , Bayes Theorem , Potassium/blood
16.
Chin Med J (Engl) ; 2024 May 06.
Article in English | MEDLINE | ID: mdl-38710539

ABSTRACT

BACKGROUND: Limited information exists regarding the impact of severe acute respiratory syndrome-coronavirus-2 (SARS-CoV-2) infection on psoriasis patients. The objective of this study was to identify clinical factors associated with the prognosis of psoriasis following SARS-CoV-2 infection. METHODS: A retrospective, multicenter study was conducted between March and May 2023. Univariable and multivariable logistic regression analyses were employed to identify factors associated with COVID-19-related psoriasis outcomes. The study included 2371 psoriasis patients from 12 clinical centers, with 2049 of them having been infected with SARS-CoV-2. RESULTS: Among the infected group, lower exacerbation rates were observed in individuals treated with biologics compared to those receiving traditional systemic or nonsystemic treatments (22.3% [236/1058] vs. 39.8% [92/231] vs. 37.5% [140/373], P <0.001). Psoriasis progression with lesions (adjusted odds ratio [OR] = 8.197, 95% confidence interval [95% CI] = 5.685-11.820, compared to no lesions), hypertension (adjusted OR = 1.582, 95% CI = 1.068-2.343), traditional systemic (adjusted OR = 1.887, 95% CI = 1.263-2.818), and nonsystemic treatment (adjusted OR = 1.602, 95% CI = 1.117-2.297) were found to be associated with exacerbation of psoriasis after SARS-CoV-2 infection, but not biologics (adjusted OR = 0.931, 95% CI = 0.680-1.274, compared to no treatment), according to multivariable logistic regression analysis. CONCLUSIONS: A reduced risk of psoriasis exacerbation after SARS-CoV-2 infection was observed with biologics compared to traditional systemic and nonsystemic treatments. Significant risk factors for exacerbation after infection were identified as existing psoriatic lesions and hypertension. TRIAL REGISTRATION: ClinicalTrials.gov (No. NCT05961605).

17.
Front Psychiatry ; 15: 1349989, 2024.
Article in English | MEDLINE | ID: mdl-38742128

ABSTRACT

Objective: Although extensive structural and functional abnormalities have been reported in schizophrenia, the gray matter volume (GMV) covariance of the amygdala remain unknown. The amygdala contains several subregions with different connection patterns and functions, but it is unclear whether the GMV covariance of these subregions are selectively affected in schizophrenia. Methods: To address this issue, we compared the GMV covariance of each amygdala subregion between 807 schizophrenia patients and 845 healthy controls from 11 centers. The amygdala was segmented into nine subregions using FreeSurfer (v7.1.1), including the lateral (La), basal (Ba), accessory-basal (AB), anterior-amygdaloid-area (AAA), central (Ce), medial (Me), cortical (Co), corticoamygdaloid-transition (CAT), and paralaminar (PL) nucleus. We developed an operational combat harmonization model for 11 centers, subsequently employing a voxel-wise general linear model to investigate the differences in GMV covariance between schizophrenia patients and healthy controls across these subregions and the entire brain, while adjusting for age, sex and TIV. Results: Our findings revealed that five amygdala subregions of schizophrenia patients, including bilateral AAA, CAT, and right Ba, demonstrated significantly increased GMV covariance with the hippocampus, striatum, orbitofrontal cortex, and so on (permutation test, P< 0.05, corrected). These findings could be replicated in most centers. Rigorous correlation analysis failed to identify relationships between the altered GMV covariance with positive and negative symptom scale, duration of illness, and antipsychotic medication measure. Conclusion: Our research is the first to discover selectively impaired GMV covariance patterns of amygdala subregion in a large multicenter sample size of patients with schizophrenia.

18.
Genome Biol ; 25(1): 117, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38715110

ABSTRACT

BACKGROUND: Preeclampsia, one of the most lethal pregnancy-related diseases, is associated with the disruption of uterine spiral artery remodeling during placentation. However, the early molecular events leading to preeclampsia remain unknown. RESULTS: By analyzing placentas from preeclampsia, non-preeclampsia, and twin pregnancies with selective intrauterine growth restriction, we show that the pathogenesis of preeclampsia is attributed to immature trophoblast and maldeveloped endothelial cells. Delayed epigenetic reprogramming during early extraembryonic tissue development leads to generation of excessive immature trophoblast cells. We find reduction of de novo DNA methylation in these trophoblast cells results in selective overexpression of maternally imprinted genes, including the endoretrovirus-derived gene PEG10 (paternally expressed gene 10). PEG10 forms virus-like particles, which are transferred from the trophoblast to the closely proximate endothelial cells. In normal pregnancy, only a low amount of PEG10 is transferred to maternal cells; however, in preeclampsia, excessive PEG10 disrupts maternal vascular development by inhibiting TGF-beta signaling. CONCLUSIONS: Our study reveals the intricate epigenetic mechanisms that regulate trans-generational genetic conflict and ultimately ensure proper maternal-fetal interface formation.


Subject(s)
Pre-Eclampsia , Trophoblasts , Vascular Remodeling , Pre-Eclampsia/genetics , Pregnancy , Female , Humans , Trophoblasts/metabolism , Vascular Remodeling/genetics , Placenta/metabolism , DNA Methylation , Epigenesis, Genetic , Endothelial Cells/metabolism , DNA-Binding Proteins/genetics , DNA-Binding Proteins/metabolism , Genomic Imprinting , Transforming Growth Factor beta/metabolism , Fetal Growth Retardation/genetics , Placentation/genetics , RNA-Binding Proteins , Apoptosis Regulatory Proteins
SELECTION OF CITATIONS
SEARCH DETAIL
...