Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Nanomicro Lett ; 14(1): 65, 2022 Feb 23.
Article in English | MEDLINE | ID: mdl-35199232

ABSTRACT

Silver nanowire (Ag NW) has been considered as the promising building block for the fabrication of transparent electromagnetic interference (EMI) shielding films. However, the practical application of Ag NW-based EMI shielding films has been restricted due to the unsatisfactory stability of Ag NW. Herein, we proposed a reduced graphene oxide (rGO) decorated Ag NW film, which realizes a seamless integration of optical transparency, highly efficient EMI shielding, reliable durability and stability. The Ag NW constructs a highly transparent and conductive network, and the rGO provides additional conductive path, showing a superior EMI shielding effectiveness (SE) of 33.62 dB at transmittance of 81.9%. In addition, the top rGO layer enables the hybrid film with reliable durability and chemical stability, which can maintain 96% and 90% EMI SE after 1000 times bending cycles at radius of 2 mm and exposure in air for 80 days. Furthermore, the rGO/Ag NW films also possess fast thermal response and heating stability, making them highly applicable in wearable devices. The synergy of Ag NW and rGO grants the hybrid EMI shielding film multiple desired functions and meanwhile overcomes the shortcomings of Ag NW. This work provides a reference for preparing multifunctional integrated transparent EMI shielding film.

2.
J Colloid Interface Sci ; 605: 193-203, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34325341

ABSTRACT

High-performance electromagnetic (EM) wave absorption and shielding materials integrating with flexibility, air permeability, and anti-fatigue characteristics are of great potential in portable and wearable electronics. These materials usually prepared by depositing metal or alloy coatings on fabrics. However, the shortcomings of heavy weight and easy corrosion hamper its application. In this work, the cellulose nanofiber (CF) fabric was prepared by electrospinning technology. Then, conductive polyaniline (PANI) was deposited on the CF surface via a facile in-situ polymerization process. The interweaving cellulose/polyaniline nanofiber (CPF) composite constructs a conductive network, and the electrical conductivity can be adjusted by polymerization time. Benefiting from optimal impedance matching, strong conductive loss, as well as interfacial polarization, the CPF possesses excellent EM absorption performance. The minimum reflection loss (RLmin) value is -49.24 dB, and the effective absorption bandwidth (RL < -10 dB, fe) reaches 6.90 GHz. Furthermore, the CPF also exhibits outstanding electromagnetic interference (EMI) shielding capability with shielding efficiency (SE) of 34.93 dB in the whole X band. Most importantly, the lightweight CPF fabrics have the merits of mechanical flexibility, breathability and wash resistance, which is highly applicable for wearable devices.


Subject(s)
Cellulose , Microwaves , Aniline Compounds , Textiles
3.
J Colloid Interface Sci ; 607(Pt 1): 89-99, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34492357

ABSTRACT

Flexible and transparent conductive films are highly desirable in some optoelectronic devices, such as smart windows, touch panels, as well as displays and electromagnetic protection field. Silver nanowire (Ag NW) has been considered as the best material to replace indium tin oxide (ITO) to fabricate flexible transparent electromagnetic interference (EMI) shielding films due to its superior comprehensive performance. However, the common substrates supporting Ag NWs require surface modification to enhance the adhesion with Ag NWs. In this work, a flexible and transparent Ag NWs EMI shielding film with sandwich structure through a facile rod-coating method, wherein Ag NWs network were embedded between biodegradable gelatin-based substrate and cover layer. The interfacial adhesion between Ag NWs and gelatin-based layers was enhanced by hydrogen-bonding interaction and swelling effect without any pretreatment. The shielding effectiveness (SE) of the G/Ag NW/G (G represents gelatin-based layer) film reaches 37.74 dB at X band with an optical transmittance of 72.0 %. What's more, the flexible gelatin-based layer and encapsulated structure endow the resultant G/Ag NW/G film integrating excellent mechanical properties, reliable durability, antioxidation, as well as anti-freezing performance. This work paves a new way for fabricating flexible transparent EMI shielding films.

4.
Adv Mater ; 34(4): e2106195, 2022 Jan.
Article in English | MEDLINE | ID: mdl-34599773

ABSTRACT

Electromagnetic (EM) absorbers play an increasingly essential role in the electronic information age, even toward the coming "intelligent era". The remarkable merits of heterointerface engineering and its peculiar EM characteristics inject a fresh and infinite vitality for designing high-efficiency and stimuli-responsive EM absorbers. However, there still exist huge challenges in understanding and reinforcing these interface effects from the micro and macro perspectives. Herein, EM response mechanisms of interfacial effects are dissected in depth, and with a focus on advanced characterization as well as theoretical techniques. Then, the representative optimization strategies are systematically discussed with emphasis on component selection and structural design. More importantly, the most cutting-edge smart EM functional devices based on heterointerface engineering are reported. Finally, current challenges and concrete suggestions are proposed, and future perspectives on this promising field are also predicted.

5.
Nanomicro Lett ; 13(1): 102, 2021 Apr 05.
Article in English | MEDLINE | ID: mdl-34138342

ABSTRACT

HIGHLIGHTS: The eco-friendly shaddock peel-derived carbon aerogels were prepared by a freeze-drying method. Multiple functions such as thermal insulation, compression resistance and microwave absorption can be integrated into one material-carbon aerogel. Novel computer simulation technology strategy was selected to simulate significant radar cross-sectional reduction values under real far field condition. . Eco-friendly electromagnetic wave absorbing materials with excellent thermal infrared stealth property, heat-insulating ability and compression resistance are highly attractive in practical applications. Meeting the aforesaid requirements simultaneously is a formidable challenge. Herein, ultra-light carbon aerogels were fabricated via fresh shaddock peel by facile freeze-drying method and calcination process, forming porous network architecture. With the heating platform temperature of 70 °C, the upper surface temperatures of the as-prepared carbon aerogel present a slow upward trend. The color of the sample surface in thermal infrared images is similar to that of the surroundings. With the maximum compressive stress of 2.435 kPa, the carbon aerogels can provide favorable endurance. The shaddock peel-based carbon aerogels possess the minimum reflection loss value (RLmin) of - 29.50 dB in X band. Meanwhile, the effective absorption bandwidth covers 5.80 GHz at a relatively thin thickness of only 1.7 mm. With the detection theta of 0°, the maximum radar cross-sectional (RCS) reduction values of 16.28 dB m2 can be achieved. Theoretical simulations of RCS have aroused extensive interest owing to their ingenious design and time-saving feature. This work paves the way for preparing multi-functional microwave absorbers derived from biomass raw materials under the guidance of RCS simulations.

6.
ACS Appl Mater Interfaces ; 12(43): 48246-48258, 2020 Oct 28.
Article in English | MEDLINE | ID: mdl-33064943

ABSTRACT

Because of their unique three-dimensional cellular structure and intrinsic properties, polyimide foam materials have bright prospects for development in multiple functional equipment, which arouses extensive concern. In this Spotlight on Applications, several typical fabrication methods of polyimide foams and the related synthesis mechanism have been systematically described. The advantages and disadvantages of the preparation methods have been compared with each other. Representative functions and the corresponding mechanism models have been concluded, which involve thermal, mechanical, sensing, electromagnetic, environmental, and electrical fields. In the end, the severe tasks and challenges of polyimide foam materials have been summarized, and their promising future development is worth expecting.

7.
Sci Rep ; 10(1): 16044, 2020 Sep 29.
Article in English | MEDLINE | ID: mdl-32994438

ABSTRACT

Effectively broadening microwave absorbing frequency of pure magnetic substances remains a huge challenge. Herein, micro-perspective structures can be controlled through a calcination route. Satisfactorily, the composites prepared at the calcination temperature of 900 °C exhibit excellent microwave attenuation performance with a broad working frequency and appropriate paraffin filling ratio. Remarkably, the composites can reach an extremely high reflection loss (RL) value of - 49.79 dB, and the extended effective working frequency range (RL < - 10 dB) of 6.84 GHz can also be obtained. Superb magnetic loss, admirable dielectric loss, sufficient dipole polarization, as well as superior impedance matching should be band together for obtaining ideal microwave absorbers. The CoNi hydroxides derived bimatallic alloy composites were fabricated via a cost-effective and facile synthesis process, and this work aroused inspirations of designing high-performance microwave absorbers for mataining the sustainable development.

SELECTION OF CITATIONS
SEARCH DETAIL
...