Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
J Am Chem Soc ; 146(21): 14528-14538, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38742912

ABSTRACT

Composite oxides have been widely applied in the hydrogenation of CO/CO2 to methanol or as the component of bifunctional oxide-zeolite for the synthesis of hydrocarbon chemicals. However, it is still challenging to disentangle the stepwise formation mechanism of CH3OH at working conditions and selectively convert CO2 to hydrocarbon chemicals with narrow distribution. Here, we investigate the reaction network of the hydrogenation of CO2 to methanol over a series of spinel oxides (AB2O4), among which the Zn-based nanostructures offer superior performance in methanol synthesis. Through a series of (quasi) in situ spectroscopic characterizations, we evidence that the dissociation of H2 tends to follow a heterolytic pathway and that hydrogenation ability can be regulated by the combination of Zn with Ga or Al. The coordinatively unsaturated metal sites over ZnAl2Ox and ZnGa2Ox originating from oxygen vacancies (OVs) are evidenced to be responsible for the dissociative adsorption and activation of CO2. The evolution of the reaction intermediates, including both carbonaceous and hydrogen species at high temperatures and pressures over the spinel oxides, has been experimentally elaborated at the atomic level. With the integration of a series of zeolites or zeotypes, high selectivities of hydrocarbon chemicals with narrow distributions can be directly produced from CO2 and H2, offering a promising route for CO2 utilization.

2.
Materials (Basel) ; 16(4)2023 Feb 15.
Article in English | MEDLINE | ID: mdl-36837258

ABSTRACT

Efficient capture of CO2 and its conversion into other high value-added compounds by electrochemical methods is an effective way to reduce excess CO2 in the atmosphere. Porous polymeric materials hold great promise for selective adsorption and electrocatalytic reduction of CO2 due to their high specific surface area, tunable porosity, structural diversity, and chemical stability. Here, we review recent research advances in this field, including design of porous organic polymers (POPs), porous coordination polymers (PCPs), covalent organic frameworks (COFs), and functional nitrogen-containing polymers for capture and electrocatalytic reduction of CO2. In addition, key issues and prospects for the optimal design of porous polymers for future development are elucidated. This review is expected to shed new light on the development of advanced porous polymer electrocatalysts for efficient CO2 reduction.

3.
Adv Mater ; 35(5): e2205782, 2023 Feb.
Article in English | MEDLINE | ID: mdl-36427207

ABSTRACT

Although there are many studies on photocatalytic environmental remediation, hydrogen evolution, and chemical transformations, less success has been achieved for the synthesis of industrially important and largely demanded bulk chemicals using semiconductor photocatalysis, which holds great potential to drive unique chemical reactions that are difficult to implement by the conventional heterogeneous catalysis. The performance of semiconductors used for photochemical synthesis is, however, usually unsatisfactory due to limited efficiencies in light harvesting, charge-carrier separation, and surface reactions. The precise construction of heterogeneous photocatalysts to facilitate these processes is an attractive but challenging goal. Here, single-atom rhodium-doped metal sulfide nanorods composed of alternately stacked wurtzite/zinc-blende segments are successfully designed and fabricated, which demonstrate record-breaking efficiencies for visible light-driven preferential activation of C-H bond in methanol to form ethylene glycol (EG), a key bulk chemical used for the production of polyethylene terephthalate (PET) polymer. The wurtzite/zinc-blende heterojunctions lined regularly in one dimension accelerate the charge-carrier separation and migration. Single-atom rhodium selectively deposited onto the wurtzite segment with photogenerated holes accumulated facilitates methanol adsorption and C-H activation. The present work paves the way to harnessing photocatalysis for bulk chemical synthesis with structure-defined semiconductors.

4.
Angew Chem Int Ed Engl ; 60(32): 17735-17743, 2021 Aug 02.
Article in English | MEDLINE | ID: mdl-34101971

ABSTRACT

The catalytic performance of composite catalysts is not only affected by the physicochemical properties of each component, but also the proximity and interaction between them. Herein, we employ four representative oxides (In2 O3 , ZnO, Cr2 O3 , and ZrO2 ) to combine with H-ZSM-5 for the hydrogenation of CO2 to hydrocarbons directed by methanol intermediate and clarify the correlation between metal migration and the catalytic performance. The migration of metals to zeolite driven by the harsh reaction conditions can be visualized by electron microscopy, meanwhile, the change of zeolite acidity is also carefully characterized. The protonic sites of H-ZSM-5 are neutralized by mobile indium and zinc species via a solid ion-exchange mechanism, resulting in a drastic decrease of C2+ hydrocarbon products over In2 O3 /H-ZSM-5 and ZnO/H-ZSM-5. While, the thermomigration ability of chromium and zirconium species is not significant, endowing Cr2 O3 /H-ZSM-5 and ZrO2 /H-ZSM-5 catalysts with high selectivity of C2+ hydrocarbons.

SELECTION OF CITATIONS
SEARCH DETAIL
...