Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 42
Filter
2.
J Fish Biol ; 103(2): 220-234, 2023 Aug.
Article in English | MEDLINE | ID: mdl-36929653

ABSTRACT

Probiotics are widely used in aquaculture. This article aims to study the effect of Bacillus amyloliquefaciens LSG2-8 on the intestinal barrier function of Rhynchocypris lagowskii. B. amyloliquefaciens LSG2-8 were added to R. lagowskii basal diets (CK) as additives at four concentrations: 1.0 × 106 (D-6), 1.0 × 107 (D-7), 1.0 × 108 (D-8) and 1.0 × 109 (D-9) CFU g-1 by dry weight of basal diet. After a 56-day feeding experiment, the activities of intestinal digestive enzymes and immunity-related enzymes of R. lagowskii on group D-6, D-7, D-8 and D-9 diet were significantly higher than the control (P < 0.05). In molecular experiments, the authors found that the levels of TGF-ß mRNA, IL-10 mRNA, ZO-1 mRNA and claudin-3 mRNA in group D-8 R. lagowskii were significantly higher (P < 0.05) than those of the control and other groups. Furthermore, the levels of IL-1ß and IL-8 mRNA of R. lagowskii on group D-6, D-7, D-8 and D-9 diet were significantly lower than those of the control (P < 0.05). In addition, the authors found that B. amyloliquefaciens LSG2-8 can regulate the intestinal flora balance and improve the intestinal structure of R. lagowskii. In conclusion, B. amyloliquefaciens LSG2-8 can improve the intestinal barrier function of R. lagowskii and can be used as a feed additive in aquaculture.


Subject(s)
Bacillus amyloliquefaciens , Cyprinidae , Probiotics , Animals , Bacillus amyloliquefaciens/chemistry , Bacillus amyloliquefaciens/physiology , Probiotics/pharmacology , Diet/veterinary , Cyprinidae/genetics , Animal Feed/analysis , Dietary Supplements
3.
Fish Physiol Biochem ; 48(5): 1315-1332, 2022 Oct.
Article in English | MEDLINE | ID: mdl-36103020

ABSTRACT

This study evaluated the effects of dietary administration of two indigenous Bacillus (A: basal control diet; B: 0.15 g/kg of Bacillus subtilis; C: 0.1 g/kg of Bacillus subtilis and 0.05 g/kg of Bacillus licheniformis; D: 0.05 g/kg of Bacillus subtilis and 0.1 g/kg of Bacillus licheniformis; E: 0.15 g/kg of Bacillus licheniformis) on the digestive enzyme activities, intestinal morphology, intestinal immune and barrier-related genes relative expression levels, and intestinal flora of Rhynchocypris lagowskii. The results showed that the fold height, lamina propria width, and muscle layer thickness of midgut and hindgut in group C were significantly higher than that of group A (P < 0.05). The activities of protease, amylase, and lipase in group C were significantly higher than those of group A (P < 0.05). The relative expression levels of IL-1ß and IL-8 in the intestine of group C were significantly downregulated, and the relative expression levels of IL-10 and TGF-ß were significantly upregulated (P < 0.05). The relative expression levels of Claudin-2 in group A significantly increased and the relative expression levels of Claudin-4 in group A significantly reduced compared with other groups (P < 0.05). The relative expression levels of ZO-1 in groups C and D were significantly higher than those of other groups (P < 0.05). The Bacillus in the intestine of group C has the highest relative abundance among all groups. Overall, it can generally be concluded that dietary supplementation of indigenous Bacillus subtilis and Bacillus licheniformis (group C) can improve the intestinal morphology, digestion, and absorption enzyme activities, enhance intestinal mucosal immunity and barrier function, and maintain the intestinal microbial balance of R. lagowskii.


Subject(s)
Bacillus , Cypriniformes , Probiotics , Animals , Bacillus/physiology , Animal Feed/analysis , Interleukin-10/pharmacology , Probiotics/pharmacology , Claudin-2 , Claudin-4 , Interleukin-8/pharmacology , Intestines , Bacillus subtilis/physiology , Lipase , Peptide Hydrolases , Amylases , Transforming Growth Factor beta/pharmacology
4.
Fish Shellfish Immunol ; 127: 703-714, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35817364

ABSTRACT

To study the effects of dietary methionine on growth performance, immunity, antioxidant capacity, protein metabolism, inflammatory response and apoptosis factors in Chinese mitten crabs (Eriocheir sinensis). Five diets with different methionine levels (0.63%, 0.85%, 1.06%, 1.25% and 1.47%) were fed to E. sinensis for 8 weeks. Results showed that in the 1.25% Met group, both growth performance and feed utilization were significantly increased. The crude protein content of crab muscle in the 1.06% and 1.25% Met groups was significantly higher than that in the control group. The immune and antioxidant enzyme activities, as well as gene expression levels of anti-lipopolysaccharide factor 1 (ALF1), Crustin-1, prophenoloxidase (proPO), cap 'n' collar isoform C (CncC) in 1.25% Met group were significantly higher than other groups. The activities of adenosine deaminase (ADA) and glutamate transaminase (GPT) in serum decreased first and then increased with the increase of methionine content, while the changes of ADA and GPT in hepatopancreas increased first and then decreased. 1.25% Met group exhibited significantly increased levels of GOT, GPT, and ADA compared to the control group. 1.25% Met diet group significantly up-regulated protein synthesis and anti-apoptotic factors, and significantly down-regulated inflammatory and pro-apoptotic factors in hepatopancreas. At 1.25% in the diet, methionine was found to boost E. sinensis growth, muscle protein deposition and immunity, as well as its antioxidant capacity. Combined with the above results, based on the expression of factors involved in the mammalian target of rapamycin (mTOR) signaling pathway and the mitogen-activated protein kinase (MAPK) signaling pathway, it is proved that methionine can not only promote protein metabolism, improve feed utilization, but also alleviate the inflammatory response and apoptosis caused by oxidative stress in the body.


Subject(s)
Antioxidants , Brachyura , Animal Feed/analysis , Animals , Antioxidants/metabolism , Brachyura/metabolism , China , Diet , Dietary Supplements , Immunity, Innate , Mammals/metabolism , Methionine/pharmacology , Signal Transduction , Sirolimus/pharmacology , TOR Serine-Threonine Kinases/genetics , TOR Serine-Threonine Kinases/metabolism
5.
Int J Ophthalmol ; 15(3): 502-509, 2022.
Article in English | MEDLINE | ID: mdl-35310064

ABSTRACT

AIM: To compare the changes in the objective visual quality of patients with low and moderate myopia postoperatively after transepithelial photorefractive keratectomy using the smart pulse technology (SMART) and femtosecond laser in situ keratomileusis (FS-LASIK). METHODS: Corneal higher-order aberrations (HOAs), horizontal coma, vertical coma and spherical aberration were measured using Pentacam, and cutoff for modulation transfer function (MTF cutoff), objective scatter index (OSI) and Strehl ratio (SR) was measured using an optical quality analysis system (OQAS-II), before and after operation at 1, 3, and 6mo, and data were analyzed by repeated measurement two-way analysis of variance. RESULTS: The difference in uncorrected distance visual acuity between SMART and FS-LASIK was statistically significant only 1wk postoperatively. Approximately 86.36% and 80.69% of patients with spherical equivalent (SE) in ±0.50 D were observed in the SMART and FS-LASIK groups, respectively. No significant difference was observed in SE between the two groups (P=0.509). The HOAs increased postoperatively compared with those before surgery in both groups (P<0.05). No significant difference in HOA, corneal horizontal coma, spherical aberration, ΔHOA, Δhorizontal coma, and Δspherical aberration were observed between the two group (P>0.05). Corneal vertical coma and Δcorneal vertical coma in the FS-LASIK group were higher than those in the SMART group (P<0.05). The OSI of both groups at 1mo after surgery was higher than that before surgery (P<0.05). At 3 and 6mo postoperatively, the OSI in the FS-LASIK group was slightly higher than that in the SMART group (P=0.040 and 0.047, respectively). At 6mo after surgery, the MTF cutoff was statistically significant different between the two groups (P=0.026). No significant difference in SR between the FS-LASIK and SMART groups was observed at 1, 3, and 6mo postoperatively (P>0.05). CONCLUSION: The HOAs increase and visual quality is delayed in both groups postoperatively, and the long-term objective visual quality after SMART is slightly better than that after FS-LASIK.

6.
Article in English | MEDLINE | ID: mdl-34217844

ABSTRACT

The present study investigated the effects of dietary Astragalus Propinquus schischkin polysaccharides on growth, immune responses, antioxidants responses and inflammation-related genes expression in Channa argus. Channa argus were randomly divided into 5 groups and fed 5 levels diets of A. propinquus schischkin polysaccharides (0, 250, 500, 1000 and 2000 mg/kg) for 56 days. The results showed, dietary A. propinquus schischkin polysaccharides addition can increase the final body weight, weight gain and specific growth rate, decrease the feed conversion ratio of Channa argus. And dietary A. propinquus schischkin polysaccharides supplementation can increase the levels of serum superoxide dismutase, catalase, glutathione peroxidase, lysozyme, complement 3, complement 4, immunoglobulin M and alkaline phosphatase, decrease the levels of serum malondialdehyde, cortisol, aspartate aminotransferase and glutamic-pyruvic transaminase. Furthermore, dietary A. propinquus schischkin polysaccharides can decrease the gene expression levels of interleukin-1ß, interleukin-, tumor necrosis factor-α and nuclear factor-κB, increase the gene expression levels of glucocorticoid receptor in liver, spleen, kidney, intestine. To sum up, dietary A. propinquus schischkin polysaccharides can accelerate growth, enhance immune responses and antioxidants responses, regulate inflammation-related genes expression in Channa argus and the optimum amount is 1000 mg/kg.


Subject(s)
Astragalus propinquus/chemistry , Fish Proteins/genetics , Fishes/physiology , Gene Expression Regulation/drug effects , Polysaccharides/pharmacology , Animal Feed , Animals , Antioxidants/metabolism , Aquaculture , Body Weight/drug effects , Dietary Supplements , Fishes/immunology , Immunoglobulin M/blood , Inflammation/diet therapy , Inflammation/genetics , Inflammation/veterinary , Polysaccharides/administration & dosage
7.
Ann N Y Acad Sci ; 1486(1): 58-75, 2021 02.
Article in English | MEDLINE | ID: mdl-33009679

ABSTRACT

Aeromonas veronii is an important zoonotic and aquatic pathogen. An increasing number of reports indicate that it has caused substantial economic losses in the aquaculture industry, in addition to threatening human health. However, little is known about its pathogenesis. Exploration of new virulence factors of A. veronii would be helpful for further understanding its pathogenesis. Hence, we comparatively analyzed the proteomes of virulent, attenuated, and avirulent strains of A. veronii using tandem mass tag (TMT) protein labeling and found numerous proteins either up- or downregulated in the virulent strain. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses showed that these differentially expressed proteins (DEPs) were involved mainly in pathways associated with bacterial chemotaxis and microbial metabolism in diverse environments. Furthermore, the expression levels of lysine decarboxylase, endoribonuclease, maltoporin, pullulanase, and aerolysin were positively correlated with the virulence of the strains, suggesting that their function may be closely related to the virulence of A. veronii. The results of qRT-PCR and multiple reaction monitoring for some DEPs were consistent with the results of TMT protein labeling. These results suggest that these DEPs may be novel potential virulence factors and will help to further understand the pathogenesis of A. veronii.


Subject(s)
Aeromonas veronii/metabolism , Bacterial Proteins/metabolism , Gram-Negative Bacterial Infections/microbiology , Virulence Factors/metabolism , Aeromonas veronii/genetics , Animals , Bacterial Proteins/genetics , Gene Expression Regulation, Bacterial , Gram-Negative Bacterial Infections/genetics , Gram-Negative Bacterial Infections/metabolism , Humans , Proteomics , Virulence/genetics , Virulence Factors/genetics
9.
Fish Shellfish Immunol ; 106: 993-1003, 2020 Nov.
Article in English | MEDLINE | ID: mdl-32911077

ABSTRACT

Chromium (Cr) is the most common heavy metal and that becomes toxic when present at higher concentrations in aquatic environments. Allium mongolicum Regel flavonoids (AMRF) has been documented to possess detoxification, antioxidant and anti-inflammatory properties. The aim of this study was to explore the potential of dietary AMRF and Cr exposure on bioaccumulation, oxidative stress, and immune response in Ctenopharyngodon idella. After acclimation, 360 fish were randomly distributed into six groups. The fish were fed with diets supplemented with Cr and/or AMRF for 4 weeks (28 days), the Cr concentrations were 0, 120, and 240 mg/kg and the concentrations of AMRF were 0 or 40 mg/kg, respectively. The results shown that Cr accumulation in the kidney, liver, spleen, intestine and gill were significantly increased following Cr exposure, dietary AMRF supplementation attenuated the increased in Cr accumulation. Dietary AMRF supplementation significantly reduced the levels of malondialdehyde (MDA) and protein carbonyl (PC) in liver, spleen and gill compared with the same Cr dose groups. When fish were supplemented with AMRF significantly increased lysozyme activity (LZM), complement 3 (C3) in kidney and intestine compared with the same Cr dose groups. Serum glutamic oxalate transaminase (GOT) and glutamic pyruvate transaminase (GPT) were significantly increased following exposure to Cr. Dietary AMRF supplementation significantly decreased GOT and GPT activity in the serum. In addition, AMRF supplementation can decrease the expression of inflammatory (NF-κB p65, TNF-α and IL-1ß) and increased the expression of tight junction proteins (occludin and ZO-1) following Cr exposure in C. idella. These results indicate that AMRF has the potential to alleviate the effects of Cr toxicity in C. idella.


Subject(s)
Allium , Chromium/toxicity , Flavonoids/pharmacology , Protective Agents/pharmacology , Water Pollutants, Chemical/toxicity , Animals , Bioaccumulation/drug effects , Carps/immunology , Carps/metabolism , Cytokines/genetics , Diet/veterinary , Fish Proteins/genetics , Gills/metabolism , Intestinal Mucosa/metabolism , Kidney/metabolism , Liver/metabolism , Oxidative Stress/drug effects , Spleen/metabolism , Tight Junction Proteins/genetics
10.
Chemosphere ; 261: 127714, 2020 Dec.
Article in English | MEDLINE | ID: mdl-32738711

ABSTRACT

Lead (Pb) is a harmful metal element for aquatic animals. The aim of this study was to determine waterborne Pb exposure on oxidative stress, serum biochemistry and heat shock proteins (HSPs) genes expression in Channa argus. Fish were randomly divided into four groups and the Pb concentrations were 0, 50, 200, and 800 µg/L, respectively. The results showed that the accumulation of Pb was detected in the gill, intestine, liver and muscle following exposure to Pb. Pb accumulation content in tissues was gill > intestinal > liver > muscle. With the increased of Pb exposure concentrations, the levels of catalase (CAT), glutathione peroxidase (GPx), lysozyme (LZM) and immunoglobulin M (IgM) significantly decreased. Serum biochemistry, oxidative stress parameters and HSPs gene expression were all enhanced with the increase following Pb expose concentration. Our results suggest that waterborne Pb exposure can induce Pb accumulation, oxidative stress and immune response in C. argus.


Subject(s)
Fishes/physiology , Lead/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Bioaccumulation , Catalase/metabolism , Fishes/metabolism , Gene Expression , Gills/metabolism , Glutathione Peroxidase/metabolism , Heat-Shock Proteins/metabolism , Lead/metabolism , Liver/metabolism , Oxidative Stress/drug effects , Water Pollutants, Chemical/metabolism
11.
Chemosphere ; 244: 125546, 2020 Apr.
Article in English | MEDLINE | ID: mdl-32050342

ABSTRACT

Selenium (Se) is the most common micronutrient and that becomes toxic when present at higher concentrations in aquatic environments. Astaxanthin (AST) has been documented to possess antioxidant and anti-inflammatory properties. The aim of this study was to explore the potential of dietary AST and Se exposure on oxidative stress, and inflammatory response in Channa argus. After acclimation, 540 fish were randomly distributed into nine groups housed in twenty-seven glass tanks. The fish were exposed for 8 weeks to waterborne Se at 0, 100 and 200 µg L-1 or dietary AST at 0, 50 and 100 mg kg-1. The results shown that Se accumulation in the kidney, liver, spleen, intestine and gill were significantly increased following Se exposure, dietary 50 and 100 mg kg-1 AST supplementation decreased the accumulation of Se in the kidney, liver, spleen, and intestine. In addition, AST supplementation can decrease oxidative stress and inflammatory response in the liver and spleen following exposure to waterborne Se. These results indicate that AST has the potential to alleviate the effects of Se toxicity in C. argus.


Subject(s)
Fishes/physiology , Selenium/toxicity , Water Pollutants, Chemical/toxicity , Animals , Antioxidants/metabolism , Bioaccumulation , Diet , Gills/metabolism , Kidney/metabolism , Liver/metabolism , Oxidative Stress/drug effects , Selenium/metabolism , Spleen , Xanthophylls/toxicity
12.
Microb Pathog ; 141: 103918, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31935441

ABSTRACT

Aeromonas veronii is an important zoonotic pathogen that causes significant economic losses in the aquaculture industry. The use of probiotics in aquaculture is a practical alternative to antibiotics to promote animal health and aid in disease prevention. In the present study, we aimed to construct a recombinant Lactobacillus casei(surface-displayed or secretory) strain containing Malt from A. veronii TH0426 and assess its potential as an oral vaccine. A 1314-bp Malt gene fragment was successfully amplified and cloned into a prokaryotic protein expression system. Protein expression in resulting recombinant strains Lc-MCS-Malt (surface-displayed) and Lc-pPG-Malt (secretory) was then verified by Western blotting and indirect immunofluorescence. A single band was observed on the Western blots, with the molecular weight of the corresponding protein shown to be 48 kDa. Furthermore, a fluorescent signal for Lc-MCS-Malt was observed by fluorescence microscopy. At 0, 7, 16, 25, and 34 days post-immunization, tissue and blood samples were collected from common carp orally administered with the recombinant L. casei strains for immune-related index analyses. Treatment of common carp with the recombinant vaccine candidate stimulated high serum or skin mucus specific antibody titers and induced a higher lysozyme, ACP, SOD activity, while fish fed with Lc-pPG or PBS had no detectable immobilizing immune responses. Expression of IL-10, IL-1ß, TNF-α, and IFN-γ genes in the group immunized with recombinant L. casei were significantly (P < 0.05) up regulated as compared with control groups, indicating that inflammatory response and cell immune response were triggered. Results also showed that recombinant L. casei could stimulate the mucosa through colonization of the intestine, resulting in increased transcription of IL-10, IL-1ß, TNF-α, and IFN-γ. Immunity and colonization assays also showed that after 34 days of fasting, recombinant L. casei were still present in the intestines of the immunized fish. Common carp that received Lc-MCS-Malt(53.3%) and Lc-pPG-Malt (46.7%) exhibited higher survival rates than the controls after challenge with the pathogen A. veronii. Our findings suggested that recombinant L. casei can adequately protect fish and improve immunity, providing a theoretical basis for the future development of an oral Lactobacillus vaccine for use in aquaculture.


Subject(s)
Aeromonas veronii/genetics , Aeromonas veronii/immunology , Bacterial Proteins/genetics , Gene Expression , Lacticaseibacillus casei/genetics , Lacticaseibacillus casei/immunology , Recombinant Proteins , Animals , Bacterial Vaccines/genetics , Bacterial Vaccines/immunology , Cloning, Molecular , Cytokines/genetics , Cytokines/metabolism , Fish Diseases/prevention & control , Immunity, Humoral , Immunization , Leukocytes/immunology , Leukocytes/metabolism , Organ Specificity , Phagocytosis/genetics , Plasmids/genetics
13.
Int J Mol Sci ; 21(1)2019 Dec 19.
Article in English | MEDLINE | ID: mdl-31861650

ABSTRACT

Aeromonas veronii is a pathogen capable of infecting humans, livestock and aquatic animals, resulting in serious economic losses. In this study, two recombinant Lactobacillus casei expressing flagellin A (FlaA) of A. veronii, Lc-pPG-1-FlaA (surface-displayed) and Lc-pPG-2-FlaA (secretory) were constructed. The immune responses in fish administered with recombinant L. casei were evaluated. The two recombinant L. casei were orally administered to common carp, which stimulated high serum IgM and induced higher ACP, AKP, SOD and LYZ activity. Using qRT-PCR, the expression of IL-10, IL-8, IL-1ß, TNF-α and IFN-γ in the tissue of fish immunized with recombinant L. casei was significantly (p < 0.05) upregulated, which indicated that recombinant L. casei could activate the innate immune system to trigger the cell immune response and inflammatory response. Furthermore, recombinant L. casei was able to survive the intestinal environment and colonize in intestine mucosal. The study showed that after being challenged by A. veronii, fish administered with Lc-pPG-1-FlaA (70%) and Lc-pPG-2-FlaA (50%) had higher survival rates compared to Lc-pPG and PBS, indicating that recombinant L. casei might prevent A. veronii infection by activating the immune system to trigger immune responses. We demonstrated that flagellin as an antigen of vaccine, is acceptable for preventing A. veronii infection in fish. The recombinant L. casei expressing FlaA may be a novel mucosal vaccine for treating and controlling A. veronii.


Subject(s)
Aeromonas veronii/immunology , Bacterial Vaccines/administration & dosage , Fish Diseases/prevention & control , Flagellin/metabolism , Lacticaseibacillus casei/physiology , Administration, Oral , Aeromonas veronii/pathogenicity , Animals , Bacterial Vaccines/immunology , Carps/immunology , Fish Diseases/immunology , Flagellin/genetics , Flagellin/immunology , Gene Expression Regulation , Immunoglobulin M/blood , Interferon-gamma/genetics , Interleukins/genetics , Tumor Necrosis Factor-alpha/genetics
14.
Front Microbiol ; 10: 2663, 2019.
Article in English | MEDLINE | ID: mdl-31798571

ABSTRACT

Aeromonas veronii is an emerging aquatic pathogen causing hemorrhagic septicemia in humans and animals. Probiotic is an effective strategy for controlling enteric infections through reducing intestinal colonization by pathogens. Here we report that the consumption of Bacillus velezensis regulated the intestinal innate immune response and decreased the degree of intestinal inflammation damage caused by the A. veronii in Crucian carp. In this study, we isolated four strains of B. velezensis, named C-11, S-22, L-17 and S-14 from apparently healthy Crucian carp, which exerted a broad-spectrum antimicrobial activity inhibiting both Gram-positive and Gram-negative bacteria especially the fish pathogens. B. velezensis isolates showed typical Bacillus characteristics by endospore staining, physiological and biochemical test, enzyme activity analysis (amylase, protease, and lipase), and molecular identification. Here, Bacillus-containing dietary was orally administrated to Crucian carp for 8 weeks before A. veronii challenge. Immunological parameters and the expression of immune-related genes were measured at 2, 4, 6, 8, and 10 weeks post-administration. The results showed that B. velezensis was found to promote the increase in the phagocytic activities of peripheral blood leukocytes (PBLs) and head kidney leukocytes (HKLs), as well as the increase in interleukin 1ß (IL-1ß), IL-10 and tumor necrosis factor α (TNF-α) concentration of serum. Lysozyme levels (113.76 U/mL), ACP activity (25.32 U/mL), AKP activity (130.08 U/mL), and SOD activity (240.63 U/mL) were maximum (P < 0.05) in the B. velezensis C-11 treated group at 8 week. Our results showed that Crucian carp fed with the diet containing B. velezensis C-11 and S-22 developed a strong immune response with significantly higher (P < 0.05) levels of IgM in samples of serum, mucus of skin and intestine compared to B. velezensis L-17 and S-14 groups. Moreover, B. velezensis spores appeared to show no toxicity and damage in fish, which could inhabit the gut of Crucian carp. B. velezensis restrained up-regulation of pro-inflammation cytokines (IL-1ß, IFN-γ, and TNF-α) mRNA levels in the intestine and head kidney at final stage of administration, and the expression of IL-10 was increased throughout the 10-week trial. A. veronii infection increased the population of inflammatory cells in the intestinal villi in the controls. In contrast, numerous goblet cells and few inflammatory cells infiltrated the mucosa in the B. velezensis groups after challenge with A. veronii. Compared with A. veronii group, B. velezensis could safeguard the integrity of intestinal villi. The highest post-challenge survival rate (75.0%) was recorded in B. velezensis C-11 group. The present data suggest that probiotic B. velezensis act as a potential gut-targeted therapy regimens to protecting fish from pathogenic bacteria infection. IMPORTANCE: In this work, four Bacillus velezensis strains isolated from apparently healthy Crucian carp, which exhibited a broad-spectrum antibacterial activity especially the fish pathogens. Administration of B. velezensis induced the enhancement of the intestinal innate immune response through reducing intestinal colonization by pathogens. The isolation and characterization would help better understand probiotic can be recognized as an alternative of antimicrobial drugs protecting human and animal health.

15.
Fish Shellfish Immunol ; 93: 1100-1110, 2019 Oct.
Article in English | MEDLINE | ID: mdl-31422179

ABSTRACT

Nrf2/Keap1 pathway is associated with oxidative stress. l-carnitine is currently under preclinical evaluation as a antioxidant, but the use of l-carnitine in aquaculture has been poorly evaluated and so far no mechanism has been demonstrated. Here, we explored the effects of l-carnitine in vitro and in vivo and discussed the possible molecular mechanisms involved. Firstly, Nrf2-siRNA significantly knocked down the mRNA level of Nrf2 in FHM cells. Thus, the activities of antioxidant enzymes (T-SOD, CAT, GSH-PX) and the level of antioxidant substance (GSH) and the level of MDA showed that Nrf2-siRNA pretreatment weakened the protective effect of l-carnitine. Moreover, the mRNA levels of Keap1, Nrf2, Maf and HO-1 indicated that l-carnitine regulated Nrf2/Keap1 activation. Furthermore, oxidized fish oil remarkably suppressed growth in Rhynchocypris lagowski Dybowski, and the lower antioxidant capacity was also observed in liver. According to the results of immune related indexes (the levels of IL-1ß, TNF-α, LZM, AKP) in serum and the mRNA levels of immune related genes (NF-κB, IL-1ß, TNF-α, IL-8, IL-10 and TGF-ß) in liver, oxidized fish oil also induced inflammatory response in fish. Also, l-carnitine supplementation can relieve this bad condition. In conclusion, l-carnitine regulated Nrf2/Keap1 activation in vitro and in vivo and protected oxidized fish oil-induced inflammation response by inhibiting the NF-κB signaling pathway in Rhynchocypris lagowski Dybowski.


Subject(s)
Carnitine/metabolism , Cyprinidae/immunology , Fish Diseases/immunology , Fish Proteins/metabolism , Protective Agents/metabolism , Signal Transduction/drug effects , Animals , Anti-Inflammatory Agents/administration & dosage , Anti-Inflammatory Agents/pharmacology , Antioxidants/administration & dosage , Antioxidants/pharmacology , Carnitine/administration & dosage , Carrier Proteins/metabolism , Cell Line , Cyprinidae/genetics , Cyprinidae/growth & development , Dose-Response Relationship, Drug , Fish Diseases/drug therapy , Fish Oils/pharmacology , Inflammation/drug therapy , Inflammation/immunology , Inflammation/veterinary , NF-E2-Related Factor 2/metabolism , NF-kappa B/metabolism , Oxidation-Reduction , Oxidative Stress , Protective Agents/administration & dosage , Random Allocation
16.
Fish Shellfish Immunol ; 91: 122-129, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31055018

ABSTRACT

Selenium (Se) is a micronutrient that becomes toxic when present at higher concentrations in fish tissues. Allium mongolicum Regel flavonoids (AMRF) have been documented to possess antioxidant, immunoenhancement and anti-inflammation properties. The aim of this study was to investigate the protective effects and potential mechanisms of dietary supplementation of AMRF and Se exposure on oxidative stress, immune responses and immune-related genes expression in Channa argus. A total of 480 C. argus were randomly divided into eight groups housed in twenty-four 200 L glass aquarium (3 tanks per group, 20 fish per tank). The fish were exposed for 56 days to waterborne Se at 0, 50, 100 and 200 µg/L and/or dietary AMRF at 40 mg/kg. The result indicated that AMRF exerted significant protective effects by preventing alterations in the levels of bioaccumulation, malondialdehyde, lysozyme, complement C3 and immunoglobulin M. AMRF also assists in the elevation of catalase and glutathione peroxidase in the liver and spleen while regulating the expression of immune-related genes including NF-κB p65, IκB-α, TNF-α, IL-1ß, IL-8, HSP70, HSP90, and glucocorticoid receptor after 56 days of Se exposure. Our results suggest that administration of AMRF (40 mg/kg) has the potential to combat Se toxicity in C. argus.


Subject(s)
Allium/chemistry , Fishes/immunology , Flavonoids/pharmacology , Gene Expression Regulation/immunology , Immunity, Innate/immunology , Oxidative Stress , Selenium/metabolism , Animal Feed/analysis , Animals , Diet/veterinary , Dietary Supplements/analysis , Dose-Response Relationship, Drug , Gene Expression Regulation/drug effects , Immunity, Innate/drug effects , Oxidative Stress/drug effects , Plant Extracts/chemistry , Plant Extracts/pharmacology , Random Allocation , Toxicity Tests, Subchronic
17.
Fish Shellfish Immunol ; 87: 627-637, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30708057

ABSTRACT

Aeromonas veronii is an important type of gram-negative pathogen of human-livestock-aquatic animal and causes great economic losses in the aquaculture industry. Vaccination is an effective method of defence against A. veronii. There are many factors that restrict the use of vaccination, and the development of new oral vaccines is urgently needed. The selection of suitable antigens is of great significance for the development of aquaculture vaccines. Bacterial flagellin can specifically bind to TLR5 and induce the release of cytokines from the organism, which could be used in the development of vaccines. In this study, we constructed two recombinant Lactobacillus casei (L. casei) (surface-displayed or secretory) expressing the flaB of A. veronii and evaluated the effect of immune responses in common carp. The flaB gene (900 bp) of A. veronii was subcloned into the L. casei expression plasmids pPG-1 (surface-displayed) and pPG-2 (secretory). Western blot and immunofluorescence assays confirmed the expression of the recombinant flaB protein. Common carp immunized with Lc-pPG-1-flaB and Lc-pPG-2-flaB via oral administration route exhibited induction of antibody expression and innate immune responses. The results indicated that Lc-pPG-1-flaB and Lc-pPG-2-flaB can induce high levels of IgM, ACP, AKP, LZM and SOD activity in organisms, and Lc-pPG-1-flaB can induce even higher levels. The recombinant L. casei may effectively induce humoral immunity and increase the serum immunological index. Furthermore, leukocytes phagocytosis percentage and index of the recombinant L. casei were enhanced. The results of qRT-PCR showed that recombinant L. casei can significantly increase the expression of IL-10, IL-ß, IFN-γ and TNF-α in the tissues of immunized common carp, compared with control groups. Viable recombinant L. casei strains, which were delivered directly survived throughout the intestinal tract. Common carp that received Lc-pPG-1-flaB (66.7%) and Lc-pPG-2-flaB (53.3%) exhibited higher survival rates than the controls after challenge with the pathogen A. veronii. Our work indicated that Lc-pPG-1-flaB and Lc-pPG-2-flaB had beneficial effects on immune response and enhanced the disease resistance of common carp against A. veronii infection. The combination of flaB delivery and the Lactic acid bacteria (LAB) approach may be a promising method for the development of oral vaccines for treating A. veronii. In future research, we will focus on the colonization ability of LAB in the intestines and on the impact of these bacteria on intestinal flora.


Subject(s)
Aeromonas veronii/drug effects , Bacterial Vaccines/immunology , Carps/immunology , Flagellin/pharmacology , Immunization/veterinary , Immunogenicity, Vaccine/immunology , Lacticaseibacillus casei/immunology , Administration, Oral , Animals , Antibodies, Bacterial/immunology , Antibody Formation/immunology , Flagellin/administration & dosage , Vaccines, Synthetic/immunology
18.
Mol Biol Rep ; 46(2): 2221-2230, 2019 Apr.
Article in English | MEDLINE | ID: mdl-30747383

ABSTRACT

The present study evaluated the effects of dietary Allium mongolicum Regel polysaccharide (AMRP) on growth, lipopolysaccharide-induced antioxidant responses and immune responses in Channa argus. A basal diet was supplemented with AMRP at 0, 1, 1.5 or 2 g/kg feed for 56 days. After the 56 days feeding period, weight gain (WG), specific growth rate (SGR) and feed conversion ratio (FCR) were significantly increased or decreased (P < 0.05) by dietary AMRP, with the highest WG, SGR and the minimum FCR occurring in 1.5 g/kg AMRP group. Furthermore, AMRP supplementation conferred significant protective effects against LPS challenge by preventing alterations in the levels of complements 3 (C3) and complements 4 (C4), lysozyme, superoxide dismutase (SOD), glutathione-S-transferase (GST), interleukin-1ß (IL-1ß) and tumour necrosis factor-α (TNF-α) while regulating the expression of immune-related genes including heat shock protein 70 (HSP70), heat shock protein 90 (HSP90), SOD, GST, IL-1 and TNF-α. Finally, AMRP supplementation significantly increased serum total protein, albumin and globulin concentrations and reduced mortality after LPS challenge. Taken together, our results suggest that the administration of AMRP could attenuate LPS-induced negative effects in C. argus, with 1.5 g/kg considered a suitable dose.


Subject(s)
Allium/metabolism , Fishes/metabolism , Plant Immunity/drug effects , Allium/physiology , Animal Feed , Animals , Antioxidants/metabolism , Antioxidants/physiology , Diet/methods , Dietary Supplements , Fishes/immunology , Immunity, Innate , Lipopolysaccharides/metabolism , Liver/metabolism , Polysaccharides/pharmacology
19.
Fish Shellfish Immunol ; 86: 280-286, 2019 Mar.
Article in English | MEDLINE | ID: mdl-30448447

ABSTRACT

The present study was conducted to evaluate the protective effects of astaxanthin against lipopolysaccharide (LPS)-induced inflammatory responses in Channa argus in vivo and ex vivo. Primary hepatocytes were exposed to different concentrations of LPS for 24 h to induce an inflammatory response, and the protective effects of astaxanthin against LPS-induced inflammation were studied ex vivo and in vivo. Hepatocytes exposed to LPS (5-20 µg mL-1) alone for 24 h resulted in a significant increase in lactate dehydrogenase release (LDH), Nitric oxide (NO) production and Malondialdehyde (MDA) content, 10 µg mL-1 LPS could induced inflammatory response in hepatocytes. Gene expression of TLR4, NFkBp65, MAPKp38, TNF-α, IL-6 and IL-1ß mRNA expression were also enhanced ex vivo (p < 0.05). In vivo test demonstrated that pretreatment with astaxanthin prevented the LPS-induced upregulation of pro-inflammatory cytokines TNF-α, IL-6 and IL-1ß. Besides, astaxanthin blocked the expression of Toll-like receptor 4 (TLR4) and then suppressed the phosphorylation of nuclear transcription factor-kappa B (NF-κB) p65 and degradation inhibitor of NF-κBα (IκBα). Further study showed that astaxanthin could suppress the phosphorylation of p38, extracellular signal-regulated kinase (ERK) and c-jun NH2-terminal kinase (JNK) in mitogen-activated protein kinase (MAPK) signal pathway. In conclusion, our results suggest that astaxanthin played an anti-inflammatory role by regulating TLR4 and the NF-κB and MAPK signaling pathways in C. argus.


Subject(s)
Anti-Inflammatory Agents/pharmacology , Fishes , Inflammation/chemically induced , MAP Kinase Signaling System/drug effects , NF-kappa B/drug effects , Animals , Cells, Cultured , Hepatocytes , Inflammation/drug therapy , Lipopolysaccharides/pharmacology , Signal Transduction , Xanthophylls/pharmacology
20.
Microb Pathog ; 117: 310-314, 2018 Apr.
Article in English | MEDLINE | ID: mdl-29481973

ABSTRACT

Florfenicol is an antibiotic, a fluorinated structural analogue of thiamphenicol and chloramphenicol, approved exclusively for use in Asia for aquaculture since the 1980's. Our study examined the prevalence of florfenicol resistance in bovine mastitis Escherichia coli isolates. A total of 245 E. coli isolates were collected from bovine mastitis in Ningxia Province, China between May 2016 to July 2017 and screened for florfenicol resistance gene, floR gene by PCR analysis. About 7.35% (15/245) of the isolates were positive for floR gene. Minimal inhibitory concentration (MIC) results showed that 9 isolates were susceptible strains and 6 isolates were highly resistant to florfenicol. HPLC (high performance liquid chromatography) results showed that the amounts of florfenicol was significantly improved in the presence of carbonyl cyanide 3-chlorophenylhydrazone (CCCP) as an efflux pump inhibitor. This, therefore, indicates that the employment of florfenicol in conjunction with CCCP in future drug formulations should be considered.


Subject(s)
Anti-Bacterial Agents/pharmacology , Drug Resistance, Bacterial/genetics , Escherichia coli Proteins/genetics , Escherichia coli/genetics , Genes, Bacterial/genetics , Thiamphenicol/analogs & derivatives , Animals , Carbonyl Cyanide m-Chlorophenyl Hydrazone , Cattle , China , Drug Combinations , Escherichia coli/drug effects , Escherichia coli/isolation & purification , Escherichia coli Infections/microbiology , Female , Mastitis, Bovine/microbiology , Microbial Sensitivity Tests , Thiamphenicol/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...