Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Language
Publication year range
1.
Gels ; 10(2)2024 Feb 01.
Article in English | MEDLINE | ID: mdl-38391448

ABSTRACT

The propensity of foamed concrete to absorb water results in a consequential degradation of its performance attributes. Addressing this issue, the integration of aerogels presents a viable solution; however, their direct incorporation has been observed to compromise mechanical properties, attributable to the effects of the interface transition zone. This study explores the incorporation of MTES-based aerogels into foamed cement via an impregnation technique, examining variations in water-cement ratios. A comprehensive analysis was conducted, evaluating the influences of MTES-based aerogels on the thermal conductivity, compressive strength, density, chemical composition, and microstructure of the resultant composites across different water-cement ratios. Our findings elucidate that an increment in the water-cement ratio engenders a gradual regularization of the pore structure in foamed concrete, culminating in augmented porosity and diminished density. Notably, aerogel-enhanced foamed concrete (AEFC) exhibited a significant reduction in water absorption, quantified at 86% lower than its conventional foamed concrete (FC) counterpart. Furthermore, the softening coefficient of AEFC was observed to surpass 0.75, with peak values reaching approximately 0.9. These results substantiate that the impregnation of MTES-based aerogels into cementitious materials not only circumvents the decline in strength but also bolsters their hydrophobicity and water resistance, indirectly enhancing the serviceability and longevity of foamed concrete. In light of these findings, the impregnation method manifests promising potential for broadening the applications of aerogels in cement-based materials.

2.
Front Plant Sci ; 14: 1232154, 2023.
Article in English | MEDLINE | ID: mdl-37636121

ABSTRACT

Trichomes provide an excellent model for studying cell differentiation and proliferation. The aboveground tissues of plants with long dense trichomes (LDTs) can cause skin itching in people working in a zucchini field, in which management, pollination, and fruit harvesting are difficult. In this study, an F2 population was constructed with the LDT inbred line "16" and the sparse micro trichome (SMT) inbred line "63" for QTL analysis of type I and II trichome density. Two QTLs were identified on chromosomes 3 and 15 using the QTL-seq method. Additionally, 191 InDel markers were developed on 20 chromosomes, a genetic map was constructed for QTL mapping, and three QTLs were identified on chromosomes 3, 6, and 15. Two QTLs, CpTD3.1 and CpTD15.1, were identified in both QTL-seq and genetic map-based QTL analyses, and CpTD15.1 was the major-effect QTL. The stability of CpTD3.1 and CpTD15.1 was confirmed using data from F2 plants under different environmental conditions. The major-effect QTL CpTD15.1 was located between markers chr15-4991349 and chr15-5766791, with a physical distance of 775.44 kb, and explained 12.71%-29.37% of the phenotypic variation observed in the three environments. CpTD3.1 was located between markers chr3-218350 and chr3-2891236, in a region with a physical distance of 2,672.89 kb, and explained 5.00%-10.64% of the phenotypic variation observed in the three environments. The functional annotations of the genes within the CpTD15.1 region were predicted, and five genes encoding transcription factors regulating trichome development were selected. Cp4.1LG15g04400 encoded zinc finger protein (ZFP) and harbored nonsynonymous SNPs in the conserved ring finger domain between the two parental lines. There were significant differences in Cp4.1LG15g04400 expression between "16" and "63", and a similar pattern was found between germplasm resources of LDT lines and SMT lines. It was presumed that Cp4.1LG15g04400 might regulate trichome density in zucchini. These results lay a foundation for better understanding the density of multicellular nonglandular trichomes and the regulatory mechanism of trichome density in zucchini.

3.
Gels ; 9(4)2023 Apr 08.
Article in English | MEDLINE | ID: mdl-37102929

ABSTRACT

To address the leakage issue of paraffin phase-change materials in thermal management, a monolithic MTMS-based silica aerogel (MSA) is employed to encapsulate paraffin through a facile impregnation process. We find that the paraffin and MSA form a physical combination, with little interaction occurring between them. The prepared no-leakage paraffin/MSA composites have a density of 0.70 g/cm3 and exhibit good mechanical properties and nice hydrophobicity, with a contact angle of 122°. Furthermore, the average latent heat of the paraffin/MSA composites is found to reach up to 209.3 J/g, about 85% of the pure paraffin's latent heat, which is significantly larger than other paraffin/silica aerogel phase-change composite materials. The thermal conductivity of the paraffin/MSA remains almost the same as that of the pure paraffin (~250 mW/m/K), without any heat transfer interference from the MSA skeletons. All these results indicate that MSA can effectively serve as a carrier material for encapsulating paraffin, which is beneficial for expanding the applications of MSAs in thermal management and energy storage.

4.
Gels ; 8(10)2022 Oct 14.
Article in English | MEDLINE | ID: mdl-36286155

ABSTRACT

In this work, we reported that aramid pulps (AP) reinforced clay aerogel composites with improved mechanical strength, good thermal insulation and fire resistance based on the combination of AP, Poly(vinyl alcohol) (PVA) and sodium montmorillonite (MMT), which present a promising prospect in the thermal insulation application. The PVA-MMT-APx (x: denotes the mass content of AP) aerogel composites present an isotropic "lamella-honeycomb" porous structure, which endows them with excellent comprehensive performance. With the AP content increasing, the extremely low density is kept, ranging between 67-73 mg/cm3, and the low thermal conductivity is maintained within 40.9-47.9 mW·m-1·K-1. The mechanical strength is significantly improved with the maximum compressive modulus increasing from 2.95 to 5.96 MPa and the specific modulus rising from 44.03 to 81.64 MPa∙cm3/g. Their detailed heat transfer process has been analyzed, which provides a deep understanding to the low thermal conductivity of the PVA-MMT-APx aerogel composites. Based on the combination of thermogravimetric analysis and combustion behavior, the PVA-MMT-APx aerogel composites are demonstrated to possess improved thermal stability and fire resistance. This study puts forward a facile approach to utilizing AP to reinforce clay aerogel composites, which provides new insight into the development of thermal-insulating, fire-safe and high-strength thermal insulation materials.

5.
J Colloid Interface Sci ; 607(Pt 2): 1741-1753, 2022 Feb.
Article in English | MEDLINE | ID: mdl-34598031

ABSTRACT

HYPOTHESIS: A unique adhesion-shielding (AS)-based method could be used to manufacture magnetic Janus nanoparticles (IM-JNPs) of promising interfacial activities, asymmetric surface wettability, and great performance on deoiling from oily wastewater under the external magnetic field. EXPERIMENTS: The IM-JNPs were characterized using scanning electron microscope (SEM), X-ray diffraction (XRD), thermogravimetric analysis (TGA), and Fourier-transform infrared spectroscopy (FTIR). The interfacial properties of IM-JNPs were investigated by the measurements of interfacial pressure-area isotherms (π-A), oil-water interfacial tension, and the related crumpling ratio. The Langmuir-Blodgett (L-B) technique was used to determine the asymmetric surface wettability of the IM-JNPs. The performance and recyclability of IM-JNPs for treating oily wastewater were also investigated. FINDINGS: Using the proposed AS-based method, 17.9 g IM-JNPs were synthesized at a time and exhibited excellent interfacial properties, as indicated by decreasing oil-water interfacial tension from 38 to 27 mN/m. The crumpling behavior of the oil droplet further demonstrated the irreversible deposition of IM-JNPs at the oil droplet surfaces. The L-B technique and water contact angle measurement confirmed the asymmetric surface wettability of the IM-JNPs. The IM-JNPs were applied to successful removal of > 90% emulsified oil droplets from the household-produced oily wastewater under the external magnetic field while realizing facile recyclability and regeneration.


Subject(s)
Multifunctional Nanoparticles , Magnetic Phenomena , Oils , Surface Tension , Wettability
6.
Ultrason Sonochem ; 70: 105311, 2021 Jan.
Article in English | MEDLINE | ID: mdl-32871384

ABSTRACT

Hydrodynamic cavitation (HC) has emerged as one of the most potential technologies for industrial-scale water treatment. The advanced rotational hydrodynamic cavitation reactors (ARHCRs) that appeared recently have shown their high effectiveness and economical efficiency compared with conventional devices. For the interaction-type ARHCRs where cavitation is generated from the interaction between the cavitation generation units (CGUs) located on the rotor and the stator, their flow field, cavitation generation mechanism, and interaction process are still not well defined. The present study experimentally and numerically investigated the cavitation flow characteristics in a representative interaction-type ARHCR which has been proposed in the past. The cavitation generation mechanism and development process, which was categorized into "coinciding", "leaving", and "approaching" stages, were analyzed explicitly with experimental flow visualization and computational fluid dynamics (CFD) simulations. The changes in the cavitation pattern, area ratio, and sheet cavitation length showed high periodicity with a period of 0.5 ms/cycle at a rotational speed of 3,600 rpm in the flow visualization. The experimental and CFD results indicated that sheet cavitation can be generated on the downstream sides of both the moving and the static CGUs. The sheet cavitation was induced and continuously enlarged in the "leaving" and "approaching" stages and was crushed after the moving CGUs coincided with the static CGUs. In addition, vortex cavitation was formed in the vortex center of each CGU due to high-speed rotating fluid motion. The shape and size of the vortex cavitation were determined by the compression effect produced by the interaction. The findings of this work are important for the fundamental understanding, design, and application of the ARHCRs in water treatment.

7.
Sci Total Environ ; 737: 139606, 2020 Oct 01.
Article in English | MEDLINE | ID: mdl-32783818

ABSTRACT

Disinfection, which aims to eliminate pathogenic microorganisms, is an essential step of water treatment. Hydrodynamic cavitation (HC) has emerged as a promising technology for large-scale disinfection without introducing new chemicals. HC, which can effectively induce sonochemistry by mechanical means, creates extraordinary conditions of pressures of ~1000 bar, local hotspots with ~5000 K, and high oxidation (hydroxyl radicals) in room environment. These conditions can produce highly destructive effects on microorganisms in water. In addition, the enhancements of chemical reactions and mass transfers by HC produce the synergism between HC and disinfectants or other physical treatment methods. HC is generated by hydrodynamic cavitation reactors (HCRs), therefore, their performance basically determines the effectiveness, economical efficiency, and applicability of HC disinfection. Therefore, developing high-performance HCRs and revealing the corresponding disinfection mechanisms are the most crucial issues today. In this review, we summarize the fundamental principles of HC and HCRs and recent development in HC disinfection. The energy release from cavitation phenomenon and corresponding mechanisms are elaborated. The performance (effectiveness, treatment ratio, and cost) of various HCRs, effects of treatment conditions on performance, and applicability of HC disinfection are evaluated and discussed. Finally, recommendations are provided for the future progress based on the analysis of previous studies.


Subject(s)
Disinfectants , Water Purification , Disinfection , Hydrodynamics , Water Microbiology
8.
Stem Cell Res Ther ; 7(1): 138, 2016 09 20.
Article in English | MEDLINE | ID: mdl-27649692

ABSTRACT

BACKGROUND: Mesenchymal stem cells (MSCs) are widely used in cell-based therapy owing to their multilineage potential and low immunogenicity. However, low differentiation efficiency and unpredictable immunogenicity of allogeneic MSCs in vivo limit their success in therapeutic treatment. Herein, we evaluated the differentiation potential and immunogenicity of human placenta-derived MSCs manipulated with osteogenic priming and dedifferentiation process. METHODS: MSCs from human placentas were subjected to osteogenic induction and then cultivated in osteogenic factor-free media; the obtained cell population was termed dedifferentiated mesenchymal stem cells (De-MSCs). De-MSCs were induced into osteo-, chondro- and adipo-differentiation in vitro. Cell proliferation was quantified by a Cell-Counting Kit-8 or tritiated thymidine ([(3)H]-TdR) incorporation. Meanwhile, the osteogenesis of De-MSCs in vivo was assayed by real-time PCR and histological staining. The expressions of stem cell markers and co-stimulatory molecules on De-MSCs and lymphocytes from primed BALB/c mouse with De-MSCs were determined by flow cytometry. RESULTS: De-MSCs exhibited some properties similar to MSCs including multiple differentiation potential and hypoimmunogenicity. Upon re-osteogenic induction, De-MSCs exhibited higher differentiation capability than MSCs both in vitro and in vivo. Of note, De-MSCs had upregulated immunogenicity in association with their osteogenesis, reflected by the alternated expressions of co-stimulatory molecules on the surface and decreased suppression on T cell activation. Functionally, De-MSC-derived osteoblasts could prime lymphocytes of peripheral blood and spleen in BALB/c mice in vivo. CONCLUSIONS: These data are of great significance for the potential application of De-MSCs as an alternative resource for regenerative medicine and tissue engineering. In order to avoid being rejected by the host during allogeneic De-MSC therapy, we suggest that immune intervention should be considered to boost the immune acceptance and integration because of the upregulated immunogenicity of De-MSCs with redifferentiation in clinical applications.


Subject(s)
Culture Media/pharmacology , Mesenchymal Stem Cells/drug effects , Osteoblasts/drug effects , Osteogenesis/drug effects , Tissue Engineering/methods , Adipocytes/cytology , Adipocytes/drug effects , Adipocytes/metabolism , Animals , Cell Dedifferentiation/drug effects , Cell Differentiation/drug effects , Cell Proliferation/drug effects , Cells, Cultured , Chondrocytes/cytology , Chondrocytes/drug effects , Chondrocytes/metabolism , Culture Media/chemistry , Female , Humans , Mesenchymal Stem Cells/cytology , Mesenchymal Stem Cells/metabolism , Mice , Mice, Inbred BALB C , Osteoblasts/cytology , Osteoblasts/metabolism , Osteogenesis/genetics , Placenta/cytology , Placenta/drug effects , Placenta/metabolism , Pregnancy , Tissue Scaffolds
SELECTION OF CITATIONS
SEARCH DETAIL
...