Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 32
Filter
1.
Vaccines (Basel) ; 12(5)2024 May 08.
Article in English | MEDLINE | ID: mdl-38793763

ABSTRACT

Influenza virus is one of the main pathogens causing respiratory diseases in humans. Vaccines are the most effective ways to prevent viral diseases. However, the limited protective efficacy of current influenza vaccines highlights the importance of novel, safe, and effective universal influenza vaccines. With the progress of the COVID-19 pandemic, live-attenuated vaccines delivered through respiratory mucosa have shown robustly protective efficacy. How to obtain a safe and effective live-attenuated vaccine has become a major challenge. Herein, using the influenza virus as a model, we have established a strategy to quickly obtain a live-attenuated vaccine by mutating the cleavage site of the influenza virus. This mutated influenza virus can be specifically cleaved by chymotrypsin. It has similar biological characteristics to the original strain in vitro, but the safety is improved by at least 100 times in mice. It can effectively protect against lethal doses of both homologous H1N1 and heterologous H5N1 viruses post mucosal administration, confirming that the vaccine generated by this strategy has good safety and broad-spectrum protective activities. Therefore, this study can provide valuable insights for the development of attenuated vaccines for respiratory viruses or other viruses with cleavage sites.

2.
BMC Oral Health ; 24(1): 592, 2024 May 22.
Article in English | MEDLINE | ID: mdl-38778368

ABSTRACT

BACKGROUND: Treating the coronal dens invaginatus (CDI) with pulp infection commonly involves the removal of invagination, which increases the risk of perforation and fracture, and compromises the tooth structure. Minimally invasive endodontic management of CDI is highly recommended. This report describes two cases of type II CDI with the application of personalized templates. CASE PRESENTATION: Two cases of type II CDI, affecting the main root canal in a maxillary canine and a lateral incisor, were diagnosed. A guided endodontics (GE) approach was applied. Cone-beam computed tomography and intraoral scans were imported and aligned in a virtual planning software to design debridement routes and templates. The MICRO principle (which involves the aspects of Mechanical (M) debridement, Irrigation (I), Access cavities (C), Rectilinear routes (R), and Obstruction (O)) was proposed for designing optimal debridement routes for future applications. The templates were innovatively personalized and designed to preserve the tooth structure maximally while effectively debriding the root canal. Root canal treatment with supplementary disinfection was then performed. The follow-up of the two patients revealed favorable clinical and radiographic outcomes. CONCLUSIONS: The GE approach could be a feasible method for preserving healthy dental structure while effectively debriding the root canal, thereby achieving successful and minimally invasive endodontic treatment for CDI.


Subject(s)
Cone-Beam Computed Tomography , Dens in Dente , Root Canal Therapy , Humans , Dens in Dente/therapy , Dens in Dente/complications , Dens in Dente/diagnostic imaging , Root Canal Therapy/methods , Female , Male , Minimally Invasive Surgical Procedures/methods , Incisor/abnormalities , Incisor/diagnostic imaging , Debridement/methods , Adolescent
3.
Signal Transduct Target Ther ; 9(1): 118, 2024 May 03.
Article in English | MEDLINE | ID: mdl-38702343

ABSTRACT

Antitumor therapies based on adoptively transferred T cells or oncolytic viruses have made significant progress in recent years, but the limited efficiency of their infiltration into solid tumors makes it difficult to achieve desired antitumor effects when used alone. In this study, an oncolytic virus (rVSV-LCMVG) that is not prone to induce virus-neutralizing antibodies was designed and combined with adoptively transferred T cells. By transforming the immunosuppressive tumor microenvironment into an immunosensitive one, in B16 tumor-bearing mice, combination therapy showed superior antitumor effects than monotherapy. This occurred whether the OV was administered intratumorally or intravenously. Combination therapy significantly increased cytokine and chemokine levels within tumors and recruited CD8+ T cells to the TME to trigger antitumor immune responses. Pretreatment with adoptively transferred T cells and subsequent oncolytic virotherapy sensitizes refractory tumors by boosting T-cell recruitment, down-regulating the expression of PD-1, and restoring effector T-cell function. To offer a combination therapy with greater translational value, mRNA vaccines were introduced to induce tumor-specific T cells instead of adoptively transferred T cells. The combination of OVs and mRNA vaccine also displays a significant reduction in tumor burden and prolonged survival. This study proposed a rational combination therapy of OVs with adoptive T-cell transfer or mRNA vaccines encoding tumor-associated antigens, in terms of synergistic efficacy and mechanism.


Subject(s)
Oncolytic Virotherapy , Oncolytic Viruses , Animals , Mice , Oncolytic Viruses/genetics , Oncolytic Viruses/immunology , Oncolytic Virotherapy/methods , Combined Modality Therapy , mRNA Vaccines/immunology , Melanoma, Experimental/therapy , Melanoma, Experimental/immunology , Tumor Microenvironment/immunology , CD8-Positive T-Lymphocytes/immunology , T-Lymphocytes/immunology , Humans , Cell Line, Tumor , Cancer Vaccines/immunology , Cancer Vaccines/genetics , Cancer Vaccines/administration & dosage
4.
J Med Virol ; 96(4): e29568, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38549430

ABSTRACT

The global incidence rate of kidney cancer (KC) has been steadily increasing over the past 30 years. With the aging global population, kidney cancer has become an escalating concern that necessitates vigilant surveillance. Nowadays, surgical intervention remains the optimal therapeutic approach for kidney cancer, while the availability of efficacious treatments for advanced tumors remains limited. Oncolytic viruses, an emerging form of immunotherapy, have demonstrated encouraging anti-neoplastic properties and are progressively garnering public acceptance. However, research on oncolytic viruses in kidney cancer is relatively limited. Furthermore, given the high complexity and heterogeneity of kidney cancer, it is crucial to identify an optimal oncolytic virus agent that is better suited for its treatment. The present study investigates the oncolytic activity of the Pseudorabies virus live attenuated vaccine (PRV-LAV) against KC. The findings clearly demonstrate that PRV-LAV exhibits robust oncolytic activity targeting KC cell lines. Furthermore, the therapeutic efficacy of PRV-LAV was confirmed in both a subcutaneous tumor-bearing nude mouse model and a syngeneic mouse model of KC. Combined RNA-seq analysis and flow cytometry revealed that PRV-LAV treatment substantially enhances the infiltration of a diverse range of lymphocytes, including T cells, B cells, macrophages, and NK cells. Additionally, PRV-LAV treatment enhances T cell activation and exerts antitumor effects. Importantly, the combination of PRV-LAV with anti-PD-1 antibodies, an approved drug for KC treatment, synergistically enhances the efficacy against KC. Overall, the discovery of PRV-LAV as an effective oncolytic virus holds significant importance for improving the treatment efficacy and survival rates of KC patients.


Subject(s)
Cancer Vaccines , Herpesvirus 1, Suid , Immune Checkpoint Inhibitors , Kidney Neoplasms , Oncolytic Viruses , Animals , Humans , Mice , Cell Line, Tumor , Herpesvirus 1, Suid/genetics , Kidney Neoplasms/therapy , Oncolytic Viruses/genetics , Programmed Cell Death 1 Receptor , Tumor Microenvironment , Vaccines, Attenuated , Cancer Vaccines/therapeutic use , Immune Checkpoint Inhibitors/therapeutic use
5.
Heliyon ; 10(6): e27733, 2024 Mar 30.
Article in English | MEDLINE | ID: mdl-38545177

ABSTRACT

Extrachromosomal DNAs (ecDNAs) are a pervasive feature found in cancer and contain oncogenes and their corresponding regulatory elements. Their unique structural properties allow a rapid amplification of oncogenes and alter chromatin accessibility, leading to tumorigenesis and malignant development. The uneven segregation of ecDNA during cell division enhances intercellular genetic heterogeneity, which contributes to tumor evolution that might trigger drug resistance and chemotherapy tolerance. In addition, ecDNA has the ability to integrate into or detach from chromosomal DNA, such progress results into structural alterations and genomic rearrangements within cancer cells. Recent advances in multi-omics analysis revealing the genomic and epigenetic characteristics of ecDNA are anticipated to make valuable contributions to the development of precision cancer therapy. Herein, we conclud the mechanisms of ecDNA generation and the homeostasis of its dynamic structure. In addition to the latest techniques in ecDNA research including multi-omics analysis and biochemical validation methods, we also discuss the role of ecDNA in tumor development and treatment, especially in drug resistance, and future challenges of ecDNA in cancer therapy.

6.
Adv Sci (Weinh) ; 11(15): e2305316, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38342604

ABSTRACT

Chronic hepatitis B (CHB) remains a major public health concern because of the inefficiency of currently approved therapies in clearing the hepatitis B surface antigen (HBsAg). Antibody-based regimens have demonstrated potency regarding virus neutralization and HBsAg clearance. However, high dosages or frequent dosing are required for virologic control. In this study, a dual-domain-engineered anti-hepatitis B virus (HBV) therapeutic antibody 73-DY is developed that exhibits significantly improved efficacy regarding both serum and intrahepatic viral clearance. In HBV-tolerant mice, administration of a single dose of 73-DY at 2 mg kg-1 is sufficient to reduce serum HBsAg by over 3 log10 IU mL-1 and suppress HBsAg to < 100 IU mL-1 for two weeks, demonstrating a dose-lowering advantage of at least tenfold. Furthermore, 10 mg kg-1 of 73-DY sustainably suppressed serum viral levels to undetectable levels for ≈ 2 weeks. Molecular analyses indicate that the improved efficacy exhibited by 73-DY is attributable to the synergy between fragment antigen binding (Fab) and fragment crystallizable (Fc) engineering, which conferred sustained viral suppression and robust viral eradication, respectively. Long-term immunotherapy with reverse chimeric 73-DY facilitated the restoration of anti-HBV immune responses. This study provides a foundation for the development of next-generation antibody-based CHB therapies.


Subject(s)
Hepatitis B Surface Antigens , Hepatitis B, Chronic , Mice , Animals , Hepatitis B Surface Antigens/analysis , Hepatitis B, Chronic/drug therapy , Hepatitis B virus , Antibodies , Phagocytosis
8.
Cell Rep Med ; 4(11): 101296, 2023 11 21.
Article in English | MEDLINE | ID: mdl-37992686

ABSTRACT

Epstein-Barr virus (EBV) is closely associated with cancer, multiple sclerosis, and post-acute coronavirus disease 2019 (COVID-19) sequelae. There are currently no approved therapeutics or vaccines against EBV. It is noteworthy that combining multiple EBV glycoproteins can elicit potent neutralizing antibodies (nAbs) against viral infection, suggesting possible synergistic effects. Here, we characterize three nAbs (anti-gp42 5E3, anti-gHgL 6H2, and anti-gHgL 10E4) targeting different glycoproteins of the gHgL-gp42 complex. Two antibody cocktails synergistically neutralize infection in B cells (5E3+6H2+10E4) and epithelial cells (6H2+10E4) in vitro. Moreover, 5E3 alone and the 5E3+6H2+10E4 cocktail confer potent in vivo protection against lethal EBV challenge in humanized mice. The cryo-EM structure of a heptatomic gHgL-gp42 immune complex reveals non-overlapping epitopes of 5E3, 6H2, and 10E4 on the gHgL-gp42 complex. Structural and functional analyses highlight different neutralization mechanisms for each of the three nAbs. In summary, our results provide insight for the rational design of therapeutics or vaccines against EBV infection.


Subject(s)
Epstein-Barr Virus Infections , Vaccines , Animals , Mice , Viral Envelope Proteins/chemistry , Membrane Glycoproteins , Herpesvirus 4, Human , Viral Proteins , Combined Antibody Therapeutics , Epitopes , Glycoproteins , Antibodies, Neutralizing/therapeutic use
9.
J Exp Clin Cancer Res ; 42(1): 284, 2023 Oct 27.
Article in English | MEDLINE | ID: mdl-37891570

ABSTRACT

BACKGROUND: Oncolytic viruses are now well recognized as potential immunotherapeutic agents against cancer. However, the first FDA-approved oncolytic herpes simplex virus 1 (HSV-1), T-VEC, showed limited benefits in some patients in clinical trials. Thus, the identification of novel oncolytic viruses that can strengthen oncolytic virus therapy is warranted. Here, we identified a live-attenuated swine pseudorabies virus (PRV-LAV) as a promising oncolytic agent with broad-spectrum antitumor activity in vitro and in vivo. METHODS: PRV cytotoxicity against tumor cells and normal cells was tested in vitro using a CCK8 cell viability assay. A cell kinase inhibitor library was used to screen for key targets that affect the proliferation of PRV-LAV. The potential therapeutic efficacy of PRV-LAV was tested against syngeneic tumors in immunocompetent mice, and against subcutaneous xenografts of human cancer cell lines in nude mice. Cytometry by time of flight (CyTOF) and flow cytometry were used to uncover the immunological mechanism of PRV-LAV treatment in regulating the tumor immune microenvironment. RESULTS: Through various tumor-specific analyses, we show that PRV-LAV infects cancer cells via the NRP1/EGFR signaling pathway, which is commonly overexpressed in cancer. Further, we show that PRV-LAV kills cancer cells by inducing endoplasmic reticulum (ER) stress. Moreover, PRV-LAV is responsible for reprogramming the tumor microenvironment from immunologically naïve ("cold") to inflamed ("hot"), thereby increasing immune cell infiltration and restoring CD8+ T cell function against cancer. When delivered in combination with immune checkpoint inhibitors (ICIs), the anti-tumor response is augmented, suggestive of synergistic activity. CONCLUSIONS: PRV-LAV can infect cancer cells via NRP1/EGFR signaling and induce cancer cells apoptosis via ER stress. PRV-LAV treatment also restores CD8+ T cell function against cancer. The combination of PRV-LAV and immune checkpoint inhibitors has a significant synergistic effect. Overall, these findings point to PRV-LAV as a serious potential candidate for the treatment of NRP1/EGFR pathway-associated tumors.


Subject(s)
Herpesvirus 1, Suid , Neoplasms , Oncolytic Virotherapy , Oncolytic Viruses , Humans , Animals , Swine , Mice , Vaccines, Attenuated , Mice, Nude , Immune Checkpoint Inhibitors , Oncolytic Viruses/genetics , ErbB Receptors , Tumor Microenvironment
10.
Vaccines (Basel) ; 10(8)2022 Aug 11.
Article in English | MEDLINE | ID: mdl-36016191

ABSTRACT

Recent efforts have been directed toward the development of universal influenza vaccines inducing broadly neutralizing antibodies to conserved antigenic supersites of Hemagglutinin (HA). Although several studies raise the importance of glycosylation in HA antigen design, whether this theory can be widely confirmed remains unclear; which influenza HA with an altered glycosylation profile could impact the amplitude and focus of the host immune response. Here, we evaluated the characteristics and efficacy of deglycosylated modified HA proteins, including monoglycosylated HA (HAmg), unglycosylated HA (HAug), and fully glycosylated HA (HAfg), without treatment with H3N2 Wisconsin/67/2005. Our results showed that HAug could induce a cross-strain protective immune response in mice against both H3N2 and H7N9 subtypes with better antibody-dependent cellular cytotoxicity (ADCC) than the HAmg- and HAfg-immunized groups, which suggested that highly conserved epitopes that were masked by surface glycosylation may be exposed and thus promote the induction of broad antibodies that recognize the hidden epitopes. This strategy may also supplement the direction of deglycosylated modified HA for universal influenza vaccines.

11.
Proc Natl Acad Sci U S A ; 119(32): e2202371119, 2022 08 09.
Article in English | MEDLINE | ID: mdl-35917353

ABSTRACT

Epstein-Barr virus (EBV) infects more than 90% of the world's adult population and accounts for a significant cancer burden of epithelial and B cell origins. Glycoprotein B (gB) is the primary fusogen essential for EBV entry into host cells. Here, we isolated two EBV gB-specific neutralizing antibodies, 3A3 and 3A5; both effectively neutralized the dual-tropic EBV infection of B and epithelial cells. In humanized mice, both antibodies showed effective protection from EBV-induced lymphoproliferative disorders. Cryoelectron microscopy analyses identified that 3A3 and 3A5 bind to nonoverlapping sites on domains D-II and D-IV, respectively. Structure-based mutagenesis revealed that 3A3 and 3A5 inhibit membrane fusion through different mechanisms involving the interference with gB-cell interaction and gB activation. Importantly, the 3A3 and 3A5 epitopes are major targets of protective gB-specific neutralizing antibodies elicited by natural EBV infection in humans, providing potential targets for antiviral therapies and vaccines.


Subject(s)
Antibodies, Neutralizing , Antibodies, Viral , Epstein-Barr Virus Infections , Herpesvirus 4, Human , Viral Proteins , Animals , Antibodies, Neutralizing/chemistry , Antibodies, Neutralizing/isolation & purification , Antibodies, Neutralizing/therapeutic use , Antibodies, Viral/chemistry , Antibodies, Viral/isolation & purification , Antibodies, Viral/therapeutic use , Cryoelectron Microscopy , Epstein-Barr Virus Infections/prevention & control , Epstein-Barr Virus Infections/therapy , Herpesvirus 4, Human/immunology , Humans , Membrane Fusion , Mice , Viral Proteins/immunology
12.
Sci Bull (Beijing) ; 67(13): 1372-1387, 2022 Jul 15.
Article in English | MEDLINE | ID: mdl-35637645

ABSTRACT

Remarkable progress has been made in developing intramuscular vaccines against severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2); however, they are limited with respect to eliciting local immunity in the respiratory tract, which is the primary infection site for SARS-CoV-2. To overcome the limitations of intramuscular vaccines, we constructed a nasal vaccine candidate based on an influenza vector by inserting a gene encoding the receptor-binding domain (RBD) of the spike protein of SARS-CoV-2, named CA4-dNS1-nCoV-RBD (dNS1-RBD). A preclinical study showed that in hamsters challenged 1 d after single-dose vaccination or 9 months after booster vaccination, dNS1-RBD largely mitigated lung pathology, with no loss of body weight. Moreover, such cellular immunity is relatively unimpaired for the most concerning SARS-CoV-2 variants, especially for the latest Omicron variant. In addition, this vaccine also provides cross-protection against H1N1 and H5N1 influenza viruses. The protective immune mechanism of dNS1-RBD could be attributed to the innate immune response in the nasal epithelium, local RBD-specific T cell response in the lung, and RBD-specific IgA and IgG response. Thus, this study demonstrates that the intranasally delivered dNS1-RBD vaccine candidate may offer an important addition to the fight against the ongoing coronavirus disease 2019 pandemic and influenza infection, compensating limitations of current intramuscular vaccines.

13.
Nat Commun ; 13(1): 1533, 2022 03 22.
Article in English | MEDLINE | ID: mdl-35318331

ABSTRACT

Pseudorabies virus (PRV) is a major etiological agent of swine infectious diseases and is responsible for significant economic losses in the swine industry. Recent data points to human viral encephalitis caused by PRV infection, suggesting that PRV may be able to overcome the species barrier to infect humans. To date, there is no available therapeutic for PRV infection. Here, we report the near-atomic structures of the PRV A-capsid and C-capsid, and illustrate the interaction that occurs between these subunits. We show that the C-capsid portal complex is decorated with capsid-associated tegument complexes. The PRV capsid structure is highly reminiscent of other α-herpesviruses, with some additional structural features of ß- and γ-herpesviruses. These results illustrate the structure of the PRV capsid and elucidate the underlying assembly mechanism at the molecular level. This knowledge may be useful for the development of oncolytic agents or specific therapeutics against this arm of the herpesvirus family.


Subject(s)
Herpesvirus 1, Suid , Animals , Capsid , Capsid Proteins , Swine , Viral Structures
14.
Genes (Basel) ; 13(2)2022 02 19.
Article in English | MEDLINE | ID: mdl-35205423

ABSTRACT

Single-cell sequencing technologies have led to a revolution in our knowledge of the diversity of cell types, connections between biological levels of organization, and relationships between genotype and phenotype. These advances have mainly come from using model organisms; however, using single-cell sequencing in non-model organisms could enable investigations of questions inaccessible with typical model organisms. This primer describes a general workflow for single-cell sequencing studies and considerations for using non-model organisms (limited to multicellular animals). Importantly, single-cell sequencing, when further applied in non-model organisms, will allow for a deeper understanding of the mechanisms between genotype and phenotype and the basis for biological variation.


Subject(s)
Phenotype , Animals , Genotype
15.
Antiviral Res ; 186: 105014, 2021 02.
Article in English | MEDLINE | ID: mdl-33422610

ABSTRACT

Since 2011, highly pathogenic pseudorabies virus (PRV) variants that emerged on many farms in China have posed major economic burdens to the animal industry and have even recently caused several human cases of viral encephalitis. Currently, there are no approved effective drugs to treat PRV associated diseases in humans or pigs. Thus, it is important to develop a new effective drug for the treatment of PRV infection. To this end, we established a novel rapid method to screen drugs against PRV from 1818 kinds of small molecular drugs approved by the FDA. Using this method, we identified 21 kinds of them that can strongly suppress the proliferation of PRV. Mitoxantrone, puromycin dihydrochloride, mitoxantrone hydrochloride and adefovir dipivoxil effectively inhibited PRV in vitro. Of them, only adefovir dipivoxil could potently protect mice against lethal PRV infection. Our work identifies several kinds of potential therapeutics against PRV and may offer important guidance for controlling PRV epidemics and treating associated diseases in humans and animals.


Subject(s)
Adenine/analogs & derivatives , Antiviral Agents/pharmacology , Antiviral Agents/therapeutic use , Herpesvirus 1, Suid/drug effects , Organophosphonates/pharmacology , Organophosphonates/therapeutic use , Pseudorabies/drug therapy , Virus Replication/drug effects , Adenine/pharmacology , Adenine/therapeutic use , Animals , Cell Line , Drug Discovery , High-Throughput Screening Assays , Mice , Mice, Inbred BALB C , Pseudorabies/prevention & control , Pseudorabies/virology , Small Molecule Libraries/pharmacology , Swine
16.
J Med Virol ; 93(6): 3455-3464, 2021 06.
Article in English | MEDLINE | ID: mdl-32621615

ABSTRACT

Seasonal influenza is an acute respiratory infection causing around 500 000 global deaths annually. There is an unmet medical need to develop more effective antiviral drugs and vaccines against influenza infection. A rapid, accurate, high-throughput titration assay for influenza virus particles or neutralizing antibodies would be extremely useful in these research fields. However, commonly used methods such as tissue culture infective dose and plaque-forming units (PFU) for virus particle quantification, and the plaque reduction neutralization test (PRNT) for antibody determination are time-consuming, laborious, and have limited accuracy. In this study, we developed an efficient assay based on the enzyme-linked immunospot (ELISPOT) technique for the influenza virus and neutralizing antibody titration. Two broad-spectrum antibodies recognizing the nucleoproteins of influenza A and B viruses were used in the assay to broadly and highly sensitively detect influenza virus-infected cells at 16 hours postinfection. An optimized cell culture medium with no tosyl phenylalanyl chloromethyl ketone trypsin and high dose oseltamivir acid was used to improve quantitation accuracy. This ELISPOT assay displayed a good correlation (R2 = 0.9851) with the PFU assay when used to titrate 30 influenza virus isolates. The assay was also applied to measure influenza-neutralizing antibodies in 40 human sera samples, showing a good correlation (R2 = 0.9965) with the PRNT assay. This ELISPOT titration assay is a rapid, accurate, high-throughput assay for quantification of influenza virus and neutralizing antibodies, and provides a powerful tool for research into and development of drugs and vaccines against influenza.


Subject(s)
Antibodies, Neutralizing/immunology , Antibodies, Viral/blood , Enzyme-Linked Immunospot Assay/methods , High-Throughput Screening Assays/methods , Influenza, Human/diagnosis , Orthomyxoviridae/immunology , Antibodies, Monoclonal/immunology , Culture Media/chemistry , Enzyme-Linked Immunospot Assay/standards , High-Throughput Screening Assays/standards , Humans , Influenza, Human/immunology , Neutralization Tests/methods , Neutralization Tests/standards , Orthomyxoviridae/chemistry , Reproducibility of Results
17.
Gigascience ; 9(10)2020 10 24.
Article in English | MEDLINE | ID: mdl-33099628

ABSTRACT

BACKGROUND: The domestic goose is an economically important and scientifically valuable waterfowl; however, a lack of high-quality genomic data has hindered research concerning its genome, genetics, and breeding. As domestic geese breeds derive from both the swan goose (Anser cygnoides) and the graylag goose (Anser anser), we selected a female Tianfu goose for genome sequencing. We generated a chromosome-level goose genome assembly by adopting a hybrid de novo assembly approach that combined Pacific Biosciences single-molecule real-time sequencing, high-throughput chromatin conformation capture mapping, and Illumina short-read sequencing. FINDINGS: We generated a 1.11-Gb goose genome with contig and scaffold N50 values of 1.85 and 33.12 Mb, respectively. The assembly contains 39 pseudo-chromosomes (2n = 78) accounting for ∼88.36% of the goose genome. Compared with previous goose assemblies, our assembly has more continuity, completeness, and accuracy; the annotation of core eukaryotic genes and universal single-copy orthologs has also been improved. We have identified 17,568 protein-coding genes and a repeat content of 8.67% (96.57 Mb) in this genome assembly. We also explored the spatial organization of chromatin and gene expression in the goose liver tissues, in terms of inter-pseudo-chromosomal interaction patterns, compartments, topologically associating domains, and promoter-enhancer interactions. CONCLUSIONS: We present the first chromosome-level assembly of the goose genome. This will be a valuable resource for future genetic and genomic studies on geese.


Subject(s)
Geese , Genome , Animals , Chromosomes/genetics , Female , Geese/genetics , Genomics , High-Throughput Nucleotide Sequencing , Molecular Sequence Annotation
18.
Genes (Basel) ; 11(4)2020 04 22.
Article in English | MEDLINE | ID: mdl-32331314

ABSTRACT

To date, research on poultry egg production performance has only been conducted within inter or intra-breed groups, while those combining both inter- and intra-breed groups are lacking. Egg production performance is known to differ markedly between Sichuan white goose (Anser cygnoides) and Landes goose (Anser anser). In order to understand the mechanism of egg production performance in geese, we undertook this study. Here, 18 ovarian stromal samples from both Sichuan white goose and Landes goose at the age of 145 days (3 individuals before egg production initiation for each breed) and 730 days (3 high- and low egg production individuals during non-laying periods for each breed) were collected to reveal the genome-wide expression profiles of ovarian mRNAs and lncRNAs between these two geese breeds at different physiological stages. Briefly, 58, 347, 797, 777, and 881 differentially expressed genes (DEGs) and 56, 24, 154, 105, and 224 differentially expressed long non-coding RNAs (DElncRNAs) were found in LLD vs. HLD (low egg production Landes goose vs. high egg production Landes goose), LSC vs. HSC (low egg production Sichuan White goose vs. high egg production Sichuan white goose), YLD vs. YSC (young Landes goose vs. young Sichuan white goose), HLD vs. HSC (high egg production Landes goose vs. high egg production Sichuan white goose), and LLD vs. LSC (low egg production Landes goose vs. low egg production Sichuan white goose) groups, respectively. Functional enrichment analysis of these DEGs and DElncRNAs suggest that the "neuroactive ligand-receptor interaction pathway" is crucial for egg production, and particularly, members of the 5-hydroxytryptamine receptor (HTR) family affect egg production by regulating ovarian metabolic function. Furthermore, the big differences in the secondary structures among HTR1F and HTR1B, HTR2B, and HTR7 may lead to their different expression patterns in goose ovaries of both inter- and intra-breed groups. These results provide novel insights into the mechanisms regulating poultry egg production performance.


Subject(s)
Gene Expression Regulation , Ovary/metabolism , RNA, Messenger/genetics , RNA, Untranslated/genetics , Receptors, Serotonin/metabolism , Transcriptome , Animals , Female , Geese , Gene Expression Profiling , Receptors, Serotonin/genetics
19.
Front Genet ; 11: 82, 2020.
Article in English | MEDLINE | ID: mdl-32153642

ABSTRACT

Copy number variants are duplications and deletions of the genome that play an important role in phenotypic changes and human disease. Many software applications have been developed to detect copy number variants using either whole-genome sequencing or whole-exome sequencing data. However, there is poor agreement in the results from these applications. Simulated datasets containing copy number variants allow comprehensive comparisons of the operating characteristics of existing and novel copy number variant detection methods. Several software applications have been developed to simulate copy number variants and other structural variants in whole-genome sequencing data. However, none of the applications reliably simulate copy number variants in whole-exome sequencing data. We have developed and tested Simulator of Exome Copy Number Variants (SECNVs), a fast, robust and customizable software application for simulating copy number variants and whole-exome sequences from a reference genome. SECNVs is easy to install, implements a wide range of commands to customize simulations, can output multiple samples at once, and incorporates a pipeline to output rearranged genomes, short reads and BAM files in a single command. Variants generated by SECNVs are detected with high sensitivity and precision by tools commonly used to detect copy number variants. SECNVs is publicly available at https://github.com/YJulyXing/SECNVs.

20.
Sci Rep ; 9(1): 15899, 2019 11 04.
Article in English | MEDLINE | ID: mdl-31685871

ABSTRACT

The influenza epidemic is a huge burden to public health. Current influenza vaccines provide limited protection against new variants due to frequent mutation of the virus. The continual emergence of novel variants necessitates the method rapidly monitoring influenza virus infection in experimental systems. Although several replication-competent reporter viruses carrying fluorescent proteins or small luciferase have been generated in previous studies, visualizing influenza virus infection via such strategy requires reverse genetic modification for each viral strain which is usually time-consuming and inconvenient. Here, we created a novel influenza A nucleoprotein (NP) dependent reporter gene transcription activation module using NP-specific nanobodies. Our results demonstrated the modular design allowed reporter genes (mNeonGreen fluorescent protein and Gaussia luciferase) specifically expressing to detect intracellular NP protein, and therefore acts as a universal biosensor to monitor infection of various influenza A subtypes in living cells. The new system may provide a powerful tool to analyze influenza A infections at the cellular level to facilitate new antiviral drug discovery. Moreover, this approach may easily extend to develop live-cell biosensors for other viruses.


Subject(s)
Biosensing Techniques/methods , Influenza A virus/physiology , Nucleoproteins/metabolism , Single-Domain Antibodies/immunology , Animals , Dogs , Genes, Reporter , Madin Darby Canine Kidney Cells , Microscopy, Fluorescence , Nucleoproteins/genetics , Nucleoproteins/immunology , Plasmids/genetics , Plasmids/metabolism , Single-Domain Antibodies/chemistry , Transcriptional Activation , Virus Internalization
SELECTION OF CITATIONS
SEARCH DETAIL
...