Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
J Inflamm Res ; 17: 2353-2363, 2024.
Article in English | MEDLINE | ID: mdl-38645876

ABSTRACT

Objective: To establish the endovascular repair and prognosis of patients with aorto-iliac aneurysm and Brucella abortus infection. Methods: From September 2018 to September 2021, seven cases of Brucella abortus infection with aorto-iliac aneurysm were treated by the endovascular aneurysm repair (EVAR) procedure. Clinical and imaging data were collected to evaluate the therapeutic results, including body temperature, blood culture, imaging manifestations, stent patency and endoleak during the postoperative and follow-up periods. Results: Except for one patient who died of acute hematemesis and hematochezia just after the admission, seven patients were treated successfully. The aneurysms were completely excluded, and all stent grafts were patent. Patients were followed up for 12-32 months, with an average follow-up of 18.5 ± 9.1 months. There were no cases of endoleak, infection recurrence, gluteal muscle ischemia or spinal cord ischemia during the follow-up period. Conclusion: It is feasible to treat Brucella abortus-infected aneurysms with the EVAR procedure. The results were optimistic in the short and medium-term. The application of sensitive antibiotics before and after the operation is the cornerstone of endovascular therapy. However, the long-term results require further follow-up.

2.
ACS Appl Mater Interfaces ; 16(14): 17483-17492, 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38556943

ABSTRACT

Interfacial metal-support interaction (MSI) significantly affects the dispersion of active metals on the surface of the catalyst support and impacts catalyst performance. Understanding MSI is crucial for developing highly active and stable catalysts with a low metal loading, particularly for noble metal catalysts. In this work, we synthesized LaRuxCr1-xO3 catalysts with low Ru loading (x = 0.005, 0.01, and 0.02) using the sol-gel self-combustion method. We found that all of the Ru atoms immediately above or below the metal-support interface are closely bonded to the perovskite LaCrO3 surface lattice through Ru-O bonds, enhancing the MSI via interfacial reaction and charge transfer mechanisms. We identified a variety of Ru species, including small 3D Ru nanoparticles, 2D dispersed Ru surface atoms, and even 0D Ru single atoms. These highly dispersed Ru species exhibit high activity and stability under dry reforming of methane (DRM) conditions. The LaRu0.01Cr0.99O3 catalyst with very low Ru loading (0.42 wt %) was stable over a 50 h DRM test and the carbon deposition was negligible. The CH4 and CO2 conversions at 750 °C reached 83 and 86%, respectively, approaching the theoretical thermodynamic equilibrium values.

3.
ACS Appl Mater Interfaces ; 15(19): 23040-23050, 2023 May 17.
Article in English | MEDLINE | ID: mdl-37040557

ABSTRACT

Reversible exsolution and dissolution of metal nanoparticles (NPs) in complex oxides have been investigated as an efficient strategy to improve the performance and durability of the catalysts for thermal and electrochemical energy conversion. Here, in situ exsolution of Co-Fe alloy NPs from the layered perovskite PrBaFeCoO5+δ (PBFC) and their dissolution back into the oxide host have been monitored for the first time by in situ neutron powder diffraction and confirmed by X-ray diffraction and electron microscopy. Catalytic tests for dry reforming of methane showed stable operation over ∼100 h at 800 °C with negligible carbon deposition (<0.3 mg/gcat h). The CO2 and CH4 conversions are among the highest achieved by layered double perovskites. The cyclability of the PBFC catalyst and the potential to improve the catalytic activity by adjusting the composition, size, and the NP distribution would pave the way for highly efficient energy conversion applications.

4.
J Phys Condens Matter ; 34(30)2022 May 30.
Article in English | MEDLINE | ID: mdl-35561671

ABSTRACT

We have explored the electric field controlled magnetization in the nanodot CoFe2O4/SrRuO3/PMN-PT (CFO/SRO/PMN-PT) heterostructures. Ordered ferromagnetic CFO nanodots (∼300 nm lateral dimension) are developed on the PMN-PT substrate (ferroelectric as well as piezoelectric) using a nanostencil-mask pattering method during pulsed laser deposition. The nanostructures reveal electric field induced magnetization reversal in the single domain CFO nanodots through transfer of piezostrains from the piezoelectric PMN-PT substrate to the CFO. Further, electric field modulated spin structure of CFO nanomagnets is analyzed by using x-ray magnetic circular dichroism (XMCD). The XMCD analysis reveals cations (Fe3+/Co2+) redistribution on the octahedral and tetrahedral site in the electric field poled CFO nanodots, establishing the strain induced magneto-electric coupling effects. The CFO/SRO/PMN-PT nanodots structure demonstrate multilevel switching of ME coupling coefficient (α) by applying selective positive and negative electric fields in a non-volatile manner. The retention of two stable states ofαis illustrated for ∼106seconds, which can be employed to store the digital data in non-volatile memory devices. Thus the voltage controlled magnetization in the nanodot structures leads a path towards the invention of energy efficient high-density memory devices.

5.
Commun Chem ; 5(1): 70, 2022 Jun 03.
Article in English | MEDLINE | ID: mdl-36697603

ABSTRACT

It is important to develop highly active and stable catalysts for high temperature reactions, such as dry reforming of methane. Here we show a La(NiCo)OΔ (LNCO) submonolayer catalyst (SMLC) stabilized by the surface lattice of a perovskite LaCrO3 support and demonstrate a Ni-Co synergistic effect. The submonolayer/support type catalyst was prepared by in-situ hydrogen reduction of a LaNi0.05Co0.05Cr0.9O3 precursor synthesized by a sol-gel method. The LNCO-SMLC is highly active and very stable during a 100 h on stream test at 750 °C under the reaction conditions of dry reforming of methane. The catalyst also shows good anti-coking ability. We found that the synergistic effect between Ni and Co atoms in LNCO-SMLC remarkably improved the thermostability of the catalyst. This work provides a useful concept for designing atomically dispersed catalysts with high thermostability.

6.
J Hazard Mater ; 392: 122506, 2020 06 15.
Article in English | MEDLINE | ID: mdl-32193122

ABSTRACT

Instrument-free, portable and direct read-out mini-devices have wider application prospects in various fields, especially for real-time/on-site detection in environmental science. Herein, a colorimetric fluorescent sensor for detecting cadmium ions (Cd2+) based on aggregation-induced emission (AIE) was established, fluorescent paper strips integrated with smartphone platform was further designed for the visualization, on-site and quantitative detection of Cd2+. The colorimetric fluorescent sensor was prepared by mixing orange emission glutathione-stabilized gold nanoclusters (AuNCs) with blue emission ethylenediamine functionalized graphene oxide (EDA-GO), and introducing copper ions (Cu2+) to quench the orange emission of AuNCs while the blue emission served as a background reference without color change. The Cd2+ can induce Cu2+-GSH-AuNCs to aggregation and emit orange fluorescence, causing the fluorescent color of the sensor changed from blue to red with the limit of detection (LOD) as low as 33.3 nM in solution. Moreover, fluorescent paper strips integrated with smartphone platform has a sensitive detection of Cd2+ with the LOD of 0.1 µM in rice samples. The method reported here might have great application prospects in real-time monitoring of foods safety and environmental protection.


Subject(s)
Cadmium/analysis , Cadmium/chemistry , Colorimetry , Ethylenediamines/chemistry , Fluorescence , Food Contamination/analysis , Glutathione/chemistry , Gold/chemistry , Graphite/chemistry , Metal Nanoparticles/chemistry , Oryza/chemistry , Paper , Smartphone
7.
ACS Appl Mater Interfaces ; 12(11): 12962-12971, 2020 Mar 18.
Article in English | MEDLINE | ID: mdl-32100526

ABSTRACT

Instrument-free, portable, and direct read-out mini-devices have wider application prospects in various fields, especially for real-time/on-site sensing. Herein, combined with a paper strip, a smartphone sensing platform integrated with a UV lamp and dark cavity by 3D-printing technology has been developed for the rapid, sensitive, instrument-free, and visual quantitative analysis in real-time/on-site conditions. The platform proved the feasibility for visual quantitative detection of pesticide via a fluorescence "on-off-on" response with a single dual-emissive ratiometric paper strip. Red-emitting CdTe quantum dots (rQDs) were embedded into the silica nanoparticles (SiO2 NPs) as an internal reference, while blue-emitting carbon dots (bCDs) as a signal report unit were covalently linked to the outer surface of SiO2 NPs. The blue fluorescence could be quenched by gold nanoparticles (Au NPs) and then recovered with pesticide. The red (R), green (G), and blue (B) channel values of the generated images were determined by a color recognizer application (APP) installed in the smartphone, and the R/B values could be used for pesticide quantification with a sensitive detection limit (LOD) of 59 nM. The smartphone sensing platform based on 3D printing might provide a general strategy for visual quantitative detection in a variety of fields including environments, diagnosis, and safety monitoring.

8.
Anal Chem ; 91(14): 9292-9299, 2019 07 16.
Article in English | MEDLINE | ID: mdl-31265244

ABSTRACT

A simple, instrument-free, paper-based analytical device with dual-emission carbon dots (CDs) (blue CDs and red CDs) was developed for the semiquantitative, visual, and sensitive speciation analysis of lead ions in a real sample with a sensitive detection limit of 2.89 nM. When a paper strip was immersed into the sample solution, the blue fluorescence was quenched by Pb2+ in solution, while the red fluorescence served as a background reference without color change, and significant color evolutions from blue to red were observed under the ultraviolet lamp, resulting in a semiquantitative visual detection. Furthermore, a smartphone was used in the visual detection of lead ions by identifying the RGB value of the fluorescent probe solution and corresponding paper strip. The application of smartphones and fluorescent paper strips has greatly shortened the detection time and reduced the cost of detection, providing a new strategy for the on-site and semiquantitative detection of heavy-metal ions in water samples.

9.
Nanomaterials (Basel) ; 9(5)2019 May 23.
Article in English | MEDLINE | ID: mdl-31126059

ABSTRACT

CuO/ZnO heterojunction nanorod arrays were synthesized using a facile photochemical deposition strategy. The morphology of CuO was related to the concentration of Cu2+ in the Cu(NO3)2 solution, UV illumination time, and the air annealing temperature. A possible reaction mechanism was proposed. In the photochemical deposition process, the OH- was generated in the vicinity of the ZnO nanorod arrays and reacted with Cu2+ and NO3- in the solution to form Cu2(NO3)(OH)3/ZnO heterojunction nanorod arrays firstly, which were converted into CuO/ZnO heterojunction nanorod arrays completely after air annealing at a low temperature. The fabricated CuO/ZnO heterojunction nanorod arrays exhibits a well-defined rectifying characteristic and an improved photo-response performance compared with pure ZnO nanorod arrays.

10.
Phys Chem Chem Phys ; 19(38): 26085-26097, 2017 Oct 04.
Article in English | MEDLINE | ID: mdl-28926034

ABSTRACT

In recent years, BiFeO3 has attracted significant attention as an interesting multiferroic material in the exploration of fundamental science and development of novel applications. Our previous study (Phys. Chem. Chem. Phys.18, 2016, 25409) highlighted the interesting physicochemical features of BiFeO3 of sub-5 nm dimension. The study also accentuated the existence of weak ferroelectricity at sub-5 nm dimensions in BiFeO3. Based on this feature, we have prepared thin films using sub-5 nm BiFeO3 nanoparticles and explored various physicochemical properties of the thin film. We report that during the formation of the thin film, the nanoparticles aggregated; particularly, annihilation of their nanotwinning nature was observed. Qualitatively, the Gibbs free energy change ΔG governed the abovementioned processes. The thin film exhibited an R3c phase and enhanced Bi-O-Fe coordination as compared to the sub-5 nm nanoparticles. Raman spectroscopy under the influence of a magnetic field shows a magnetoelectric effect, spin phonon coupling, and magnetic anisotropy. We report room-temperature ferroelectric behavior in the thin film, which enhances with the application of a magnetic field; this confirms the multiferroic nature of the thin film. The thin film shows polarization switching ability at multiple voltages and read-write operation at low bias (±0.5 V). Furthermore, the thin film shows negative differential-complementary resistive switching behavior in the nano-microampere current range. We report nearly stable 1-bit operation for 102 cycles, 105 voltage pulses, and 105 s, demonstrating the paradigm device applications. The observed results thus show that the thin films prepared using sub-5 nm BiFeO3 nanoparticles are a promising candidate for future spintronics and memory applications. The reported approach can also be pertinent to explore the physicochemical properties and develop potential applications of several other nanoparticles.

11.
Phys Chem Chem Phys ; 18(36): 25409-25420, 2016 Sep 14.
Article in English | MEDLINE | ID: mdl-27711488

ABSTRACT

Particle size significantly affects the properties and therefore the potential applications of multiferroics. However, is there special particle size effect in BiFeO3, which has a spiral modulated spin structure? This is still under investigation for sub-5 nm BiFeO3. In this report, the structural, electronic and magnetic properties are investigated for chemically synthesized BiFeO3 nanoparticles with an average size of 3 nm. We observed nanotwinning features in the specific size regime of the nanoparticles (2-4 nm). A weak Bi-O-Fe coordination and weak covalent nature has been observed in the nanoparticles through high-resolution electron energy loss spectroscopy and theoretical analysis, confirming that BiFeO3 nanoparticles a retain rudimentary R3c phase even at sub-5 nm dimensions. The R3c phase of sub-5 nm BiFeO3 nanoparticles has also been confirmed using Raman spectroscopy and Raman mapping of the vibrational modes. The nanoparticles display cluster spin glass, room temperature ferromagnetism, and a metamictization-davidite phase. The observation of weak magnetic entropy features confirmed the presence of a weak correlation between the magnetic and ferroelectric components. To support our experimental observations, we have simulated a sub-5 nm BiFeO3 nanocluster. Using density functional theory, the ferromagnetic ground state and the presence of a weak covalent nature in the nanocluster is established considering the first Brillouin zone, thus confirming our experimental results. Finding of new physicochemical features in sub-5 nm BiFeO3 would be beneficial for the understanding of the fundamental physical and chemical science as well as potential device development.

12.
Mater Sci Eng C Mater Biol Appl ; 55: 482-9, 2015 Oct.
Article in English | MEDLINE | ID: mdl-26117780

ABSTRACT

Curcumin (as a natural reductant material) was utilized for green reduction and functionalization of chemically exfoliated graphene oxide (GO) sheets. The π-π attachment of the curcumin molecules onto the curcumin-reduced graphene oxide (rGO) sheets was confirmed by Raman and Fourier transform infrared spectroscopies. Zeta potential of the GO sheets decreased from about -40 mV to -20 mV, after the green reduction and functionalization. The probable cytotoxicity of the curcumin-rGO sheets was studied through their interactions with two human breast cancer cell lines (MDA-MB-231 and SKBR3 cell lines) and a normal cell line (mouse fibroblast L929 cell line). The curcumin-rGO sheet with concentrations <70 µg/mL in the cell culture medium, not only exhibited no significant toxicity and/or cell morphological changes, but also caused some cell growths (~25% after 48 h incubation time). Nevertheless, at 70 µg/mL, initiation of some cell morphological changes was observed. At higher concentrations (e.g., 100 µg/mL), some slight cytotoxic effects (resulting in ~15-25% cell destruction) were detected by MTT assay. In addition, the interaction of the rGO sheets and cells resulted in apoptosis as well as morphological transformation of the cells (from elongated to roundup morphology). These results indicated the concentration-dependent toxicity of functionalized-rGO nanomaterials (here, curcumin-rGO) at the threshold concentration of ~100 µg/mL.


Subject(s)
Breast Neoplasms/pathology , Curcumin/chemistry , Graphite/chemistry , Cell Line, Tumor , Female , Humans , Oxides/chemistry , Spectrum Analysis
13.
ACS Appl Mater Interfaces ; 6(18): 16131-9, 2014 Sep 24.
Article in English | MEDLINE | ID: mdl-25162913

ABSTRACT

The effects of cobalt (Co) addition in the Ni-YSZ anode functional layer (AFL) on the structure and electrochemical performance of solid oxide fuel cells (SOFCs) are investigated. X-ray diffraction (XRD) analyses confirmed that the active metallic phase is a Ni(1-x)Co(x) alloy under the operation conditions of the SOFC. Scanning electron microscopy (SEM) observations indicate that the grain size of Ni(1-x)Co(x) increases with increasing Co content. Thermogravimetric analyses on the reduction of the Ni(1-x)Co(x)O-YSZ powders show that there are two processes: the chemical-reaction-controlled process and the diffusion-controlled process. It is found that the reduction peak corresponding to the chemical-reaction-controlled process in the DTG curves moves toward lower temperatures with increasing Co content, suggesting that the catalytic activity of Ni(1-x)Co(x) is enhanced by the doping of Co. It is observed that the SOFC shows the best performance at x = 0.03, and the corresponding maximum power densities are 445, 651, and 815 mW cm(-2) at 700, 750, and 800 °C, respectively. The dependence of the SOFC performance on the Co content can be attributed to the competing results between the decreased three-phase-boundary length in the AFL and the enhanced catalytic activity of the Ni(1-x)Co(x) phase with increasing Co content.

14.
Nanoscale ; 6(9): 4735-44, 2014 May 07.
Article in English | MEDLINE | ID: mdl-24658840

ABSTRACT

We report a potential way to enhance and tune the multiferroic and resistive switching properties of BiFeO3 nanoparticles through dilute aliovalent Li(1+) doping (0.046 atomic percent) at the Fe(3+) sites of BiFeO3. The high purity of the samples and the extent of doping were confirmed by different physical characterizations. Enhanced multiferroic properties with a magnetic moment per Fe atom ≈ 0.12 µB and electric polarization ≈ 49 µC cm(-2) were observed in one of the Li(1+) doped samples. A phenomenological model has been proposed to support the observed magnetic behavior of the doped samples. From a potential application point of view, we further report on the doping concentration and polarization coercivity dependent highly stable resistive switching behavior (endurance cycles >10(3) and stability >10(6) s) of Li-doped BiFeO3 nanoparticles. The stable complementary resistive switching behavior (1 bit operation) for >50 cycles and under voltage pulse for 10(3) cycles in the doped BiFeO3 at a low operating bias is reported. Thus, dilute aliovalent Li(1+) doping enables tunability of the ferroic and resistive switching properties of BiFeO3and shows it to be a promising multiferroic material.

15.
J Synchrotron Radiat ; 17(6): 782-5, 2010 Nov.
Article in English | MEDLINE | ID: mdl-20975224

ABSTRACT

The microstructure and morphology of solid-oxide fuel-cell electrodes are very complex but important because they strongly affect the electrical performance of the cell. In this work the high-resolution X-ray nanotomography technique is applied to reconstruct the three-dimensional microstructure of a (La(0.8)Sr(0.2))(0.95)MnO(3) yttria-stabilized zirconia composite cathode. Some key microstructural parameters, such as the porosity, representative elementary volume, connected pore volume and pore phase tortuosity, were obtained based on the three-dimensional reconstruction volume data with a spatial resolution of sub-60 nm. These parameters bear intimate correlation with the efficiency of the electrochemical conversion process, and provide valuable information for optimizing the manufacturing processes and improving the device's reliability.

16.
J Phys Chem B ; 111(25): 6973-7, 2007 Jun 28.
Article in English | MEDLINE | ID: mdl-17552558

ABSTRACT

The adsorption and self-organization of racemic mixture of 8-nitrospiropyran (SP8) molecules on Au(111) surfaces was studied by scanning tunneling microscopy (STM) in ultrahigh vacuum (UHV). The SP8 enantiomers, in spite of their low-symmetric and nonplanar molecular structures, formed well-ordered monolayers on Au(111). In the monolayers, we found two types of enantiomorphous, i.e., mirror-imaged, 2D chiral domains, denoted as lambda and delta phases. Both phases consist of periodically packed chiral quatrefoils. In the lambda domain, the quatrefoils are counterclockwise folded, while in the delta domain, the quatrefoils are clockwise folded. High-resolution STM images revealed that each chiral quatrefoil contains four heterochiral dimers and that each dimer is composed of two antiparallelly packed homochiral SP8 molecules. Therefore both of the two mirror-imaged 2D chiral structures are not chirally pure but racemic 2D crystals. A domain boundary, which serves as the glide reflection line between a lambda domain and a delta domain, was also observed along the [11] direction of the Au(111) substrate.

17.
J Am Chem Soc ; 129(13): 3857-62, 2007 Apr 04.
Article in English | MEDLINE | ID: mdl-17346042

ABSTRACT

The adsorption and chiral expression of 6-nitrospiropyran (SP6) molecules on a Au(111) surface are studied by scanning tunneling microscopy (STM) in combination with density functional theory (DFT) calculations. Both the chirality and the adsorption orientation of each adsorbed SP6 molecule are determined. The racemic mixture of SP6 enantiomers forms two-dimensional (2D) domains with same close packed positional orders but different internal orientational structures due to the random distribution of two adsorption orientations in each domain. However, all these orientationally disordered 2D domains undergo spontaneous quasi chiral phase separation; the 2D SP6 domains separate into 1D homochiral chains in which the SP6 molecules adopt two orientations randomly. This novel phenomenon is attributed to the preferential formation of the energetic favorable configurations with both the C-H...O weak hydrogen bonds and the pi-stacking of the two moieties of each SP6 molecule.

18.
Opt Lett ; 32(6): 632-4, 2007 Mar 15.
Article in English | MEDLINE | ID: mdl-17308584

ABSTRACT

A high-resolution miniature spectrometer has been demonstrated by utilizing a 128-channel integrated filter array, fabricated by using the combinatorial deposition technique, as a dispersive component whose passbands range from 722.0 to 880.0 nm with a bandwidth (or spectral resolution) from 1.7 to 3.8 nm and an average channel interval of 1.2 nm. The miniature spectrometer is smaller than 1 cm3 without any moving parts. This kind of miniature spectrometer has the advantages of very low payload, high resolution, and high reliability simultaneously, which are especially urgently needed for space applications.

19.
Appl Opt ; 44(29): 6181-5, 2005 Oct 10.
Article in English | MEDLINE | ID: mdl-16237932

ABSTRACT

Nb2O5 films were deposited by a reactive magnetron sputtering technique. The average refractive index was found to increase with the rise of substrate temperature. Modulated interference transmittance spectra were observed in the two-step films, which were prepared by stopping the deposition process in the middle of the designed sputtering time, and then, after a full cooling down to room temperature, starting the same deposition process again to complete the whole preparation of the films. A linearly graded-index model was used to explain the interference behavior. It was proved that the two-step film method was sensitive to the small inhomogeneity in the films. We also suggest that the inhomogeneity of sputtered films can be minimized by controlling the substrate temperature at a constant value.

20.
Ultramicroscopy ; 98(2-4): 317-34, 2004 Jan.
Article in English | MEDLINE | ID: mdl-15046812

ABSTRACT

Scanning tunneling microscopy (STM) can detect individual molecular configuration with its high spatial resolution ability, but some intrinsical and extrinsic factors result in the complexities of STM imaging of single molecules. By combining STM experimental work and theoretical simulation with the local density approximation based on Bardeen perturbation method, we have explored the atomic-scale configuration of the following molecular systems: C(60) molecules adsorbed on Si(111)-(7x7); alkanethiol self-assembly monolayers on Au(111); C(60) molecule imaged by STM tip adsorbed with another C(60) molecule; O(2) molecule adsorbed on Ag(110) and CO molecule adsorbed on Cu(111) imaged by CO chemically modified STM tip. Some related problems including: molecule-substrate interactions, STM imaging mechanism, chemically modified STM tip, etc., are discussed.

SELECTION OF CITATIONS
SEARCH DETAIL
...