Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 60
Filter
Add more filters










Publication year range
1.
Cancer Cell Int ; 24(1): 175, 2024 May 19.
Article in English | MEDLINE | ID: mdl-38764053

ABSTRACT

BACKGROUND: The incidence and mortality of lung cancer is the highest in China and the world. Brain is the most common distant metastasis site of lung cancer. Its transfer mechanism and predictive biomarkers are still unclear. EZH2 participates in the catalysis of transcriptional inhibition complex, mediates chromatin compactness, leads to the silencing of its downstream target genes, participates in the silencing of multiple tumor suppressor genes, and is related to cell proliferation, apoptosis and cycle regulation. In physiology, EZH2 has high activity in stem cells or progenitor cells, inhibits genes related to cell cycle arrest and promotes self-renewal. To detect the expression and mutation of EZH2 gene in patients with brain metastasis of lung cancer, and provide further theoretical basis for exploring the pathogenesis of brain metastasis of lung cancer and finding reliable biomarkers to predict brain metastasis of lung cancer. METHODS: This study investigated susceptible genes for brain metastasis of lung cancer. The second-generation sequencing technology was applied to screen the differential genes of paired samples (brain metastasis tissues, lung cancer tissues and adjacent tissues) of lung cancer patients with brain metastasi. RESULTS: It revealed that there was a significant difference in the G553C genotype of EZH2 between lung cancer brain metastasis tissues and lung cancer tissues (p = 0.045). The risk of lung cancer brain metastasis in G allele carriers was 2.124 times higher than that in C allele carriers. Immunohistochemistry showed that compared with lung cancer patients and lung cancer patients with brain metastasis, the expression level of EZH2 in lung cancer tissues of lung cancer patients was significantly higher than that in adjacent lung tissues (p < 0.0001), and higher than that in brain metastasis tissues (p = 0.0309). RNA in situ immunohybridization showed that EZH2 mRNA expression was gradually high in lung cancer adjacent tissues, lung cancer tissues and lung cancer brain metastasis tissues. CONCLUSIONS: EZH2 G553C polymorphism contributes to the prediction of brain metastasis of lung cancer, in which G allele carriers are more prone to brain metastasis.

2.
BMC Med Genomics ; 17(1): 89, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38627775

ABSTRACT

OBJECTIVE: Branchio-oto-renal syndrome (BOR, OMIM#113,650) is a rare autosomal dominant disorder that presents with a variety of symptoms, including hearing loss (sensorineural, conductive, or mixed), structural abnormalities affecting the outer, middle, and inner ear, branchial fistulas or cysts, as well as renal abnormalities.This study aims to identify the pathogenic variants by performing genetic testing on a family with Branchio-oto-renal /Branchio-otic (BO, OMIM#602,588) syndrome using whole-exome sequencing, and to explore possible pathogenic mechanisms. METHODS: The family spans 4 generations and consists of 9 individuals, including 4 affected by the BOR/BO syndrome. Phenotypic information, including ear malformation and branchial cleft, was collected from family members. Audiological, temporal bone imaging, and renal ultrasound examinations were also performed. Whole-exome sequencing was conducted to identify candidate pathogenic variants and explore the underlying molecular etiology of BOR/BO syndrome by minigene experiments. RESULTS: Intra-familial variability was observed in the clinical phenotypes of BOR/BO syndrome in this family. The severity and nature of hearing loss varied in family members, with mixed or sensorineural hearing loss. The proband, in particular, had profound sensorineural hearing loss on the left and moderate conductive hearing loss on the right. Additionally, the proband exhibited developmental delay, and her mother experienced renal failure during pregnancy and terminated the pregnancy prematurely. Genetic testing revealed a novel heterozygous variant NM_000503.6: c.639 + 3 A > C in the EYA1 gene in affected family members. In vitro minigene experiments demonstrated its effect on splicing. According to the American College of Medical Genetics (ACMG) guidelines, this variant was classified as likely pathogenic. CONCLUSION: This study highlights the phenotypic heterogeneity within the same family, reports the occurrence of renal failure and adverse pregnancy outcomes in a female patient at reproductive age with BOR syndrome, and enriches the mutational spectrum of pathogenic variants in the EYA1 gene.


Subject(s)
Branchio-Oto-Renal Syndrome , Deafness , Hearing Loss, Sensorineural , Hearing Loss , Renal Insufficiency , Humans , Pregnancy , Female , Branchio-Oto-Renal Syndrome/genetics , Branchio-Oto-Renal Syndrome/pathology , Intracellular Signaling Peptides and Proteins/genetics , Protein Tyrosine Phosphatases/genetics , Hearing Loss/genetics , Pedigree , Nuclear Proteins/genetics
3.
Hum Genet ; 143(3): 311-329, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38459354

ABSTRACT

Identification of genes associated with nonsyndromic hearing loss is a crucial endeavor given the substantial number of individuals who remain without a diagnosis after even the most advanced genetic testing. PKHD1L1 was established as necessary for the formation of the cochlear hair-cell stereociliary coat and causes hearing loss in mice and zebrafish when mutated. We sought to determine if biallelic variants in PKHD1L1 also cause hearing loss in humans. Exome sequencing was performed on DNA of four families segregating autosomal recessive nonsyndromic sensorineural hearing loss. Compound heterozygous p.[(Gly129Ser)];p.[(Gly1314Val)] and p.[(Gly605Arg)];p[(Leu2818TyrfsTer5)], homozygous missense p.(His2479Gln) and nonsense p.(Arg3381Ter) variants were identified in PKHD1L1 that were predicted to be damaging using in silico pathogenicity prediction methods. In vitro functional analysis of two missense variants was performed using purified recombinant PKHD1L1 protein fragments. We then evaluated protein thermodynamic stability with and without the missense variants found in one of the families and performed a minigene splicing assay for another variant. In silico molecular modeling using AlphaFold2 and protein sequence alignment analysis were carried out to further explore potential variant effects on structure. In vitro functional assessment indicated that both engineered PKHD1L1 p.(Gly129Ser) and p.(Gly1314Val) mutant constructs significantly reduced the folding and structural stabilities of the expressed protein fragments, providing further evidence to support pathogenicity of these variants. Minigene assay of the c.1813G>A p.(Gly605Arg) variant, located at the boundary of exon 17, revealed exon skipping leading to an in-frame deletion of 48 amino acids. In silico molecular modeling exposed key structural features that might suggest PKHD1L1 protein destabilization. Multiple lines of evidence collectively associate PKHD1L1 with nonsyndromic mild-moderate to severe sensorineural hearing loss. PKHD1L1 testing in individuals with mild-moderate hearing loss may identify further affected families.


Subject(s)
Deafness , Mutation, Missense , Pedigree , Receptors, Cell Surface , Stereocilia , Animals , Female , Humans , Male , Deafness/genetics , Exome Sequencing , Genes, Recessive , Hearing Loss, Sensorineural/genetics , Hearing Loss, Sensorineural/pathology , Models, Molecular , Receptors, Cell Surface/genetics , Stereocilia/metabolism , Stereocilia/pathology , Stereocilia/genetics
4.
Mol Pharm ; 21(4): 1838-1847, 2024 Apr 01.
Article in English | MEDLINE | ID: mdl-38413029

ABSTRACT

The extensive use of opioids for chronic pain management has contributed significantly to the current opioid epidemic. While many alternative nonopioid analgesics are available, opioids remain the most potent analgesics for moderate to severe pain management. In addition to the implementation of multimodal analgesia, there is a pressing need for the development of more effective and safer opioids. In this study, we developed a thermoresponsive N-(2-hydroxypropyl) methacrylamide (HPMA) copolymer-based hydromorphone (HMP) prodrug (ProGel-HMP, HMP content = 16.2 wt %, in base form). The aqueous solution of ProGel-HMP was free-flowing at 4 °C but became a hydrogel when the temperature was raised to ≥37 °C, allowing sustained local retention when administered in vivo. When tested in the destabilization of the medial meniscus (DMM) mouse model of osteoarthritis (OA), ProGel-HMP was retained after intra-articular injection in the OA knee joint for at least 2 weeks postinjection, with low extra-articular distribution. ProGel-HMP was not detected in the central nervous system (CNS). A single dose of ProGel-HMP produced rapid and sustained joint pain resolution for greater than 14 days when compared to saline and dose-equivalent HMP controls, likely mediated through peripheral µ-opioid receptors in the knee joint. Systemic analgesia effect was absent in the DMM mice treated with ProGel-HMP, as evident in the lack of difference in tail flick response between the ProGel-HMP-treated mice and the controls (i.e., Healthy, Saline, and Sham). Repeated dosing of ProGel-HMP did not induce tolerance. Collectively, these data support the further development of ProGel-HMP as a potent, safe, long-acting and nonaddictive analgesic for better clinical pain management.


Subject(s)
Analgesia , Drug-Related Side Effects and Adverse Reactions , Osteoarthritis , Prodrugs , Mice , Animals , Hydromorphone , Pain Management , Prodrugs/therapeutic use , Pain/drug therapy , Analgesics, Opioid/adverse effects , Analgesics/therapeutic use
5.
Mod Pathol ; 37(1): 100384, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37972928

ABSTRACT

Tumor-agnostic testing for NTRK1-3 gene rearrangements is required to identify patients who may benefit from TRK inhibitor therapies. The overarching objective of this study was to establish a high-quality pan-TRK immunohistochemistry (IHC) screening assay among 18 large regional pathology laboratories across Canada using pan-TRK monoclonal antibody clone EPR17341 in a ring study design. TRK-fusion positive and negative tumor samples were collected from participating sites, with fusion status confirmed by panel next-generation sequencing assays. Each laboratory received: (1) unstained sections from 30 cases of TRK-fusion-positive or -negative tumors, (2) 2 types of reference standards: TRK calibrator slides and IHC critical assay performance controls (iCAPCs), (3) EPR17341 antibody, and (4) suggestions for developing IHC protocols. Participants were asked to optimize the IHC protocol for their instruments and detection systems by using iCAPCs, to stain the 30 study cases, and to report the percentage scores for membranous, cytoplasmic, and nuclear staining. TRK calibrators were used to assess the analytical sensitivity of IHC protocols developed by using the 2 reference standards. Fifteen of 18 laboratories achieved diagnostic sensitivity of 100% against next-generation sequencing. The diagnostic specificity ranged from 40% to 90%. The results did not differ significantly between positive scores based on the presence of any type of staining vs the presence of overall staining in ≥1% of cells. The median limit of detection measured by TRK calibrators was 76,000 molecules/cell (range 38,000 to >200,000 molecules/cell). Three different patterns of staining were observed in 19 TRK-positive cases, cytoplasmic-only in 7 samples, nuclear and cytoplasmic in 9 samples, and cytoplasmic and membranous in 3 samples. The Canadian multicentric pan-TRK study illustrates a successful strategy to accelerate the multicenter harmonization and implementation of pan-TRK immunohistochemical screening that achieves high diagnostic sensitivity by using laboratory-developed tests where laboratories used centrally developed reference materials. The measurement of analytical sensitivity by using TRK calibrators provided additional insights into IHC protocol performance.


Subject(s)
Neoplasms , Humans , Immunohistochemistry , Canada , Antibodies, Monoclonal , Receptor, trkA/genetics , Oncogene Proteins, Fusion/genetics , Biomarkers, Tumor/genetics
6.
Front Physiol ; 14: 1288907, 2023.
Article in English | MEDLINE | ID: mdl-38033338

ABSTRACT

Introduction: Chronic Heart failure (CHF) is a highly prevalent disease that leads to significant morbidity and mortality. Diffuse vasculopathy is a commonmorbidity associated with CHF. Increased vascular permeability leading to plasma extravasation (PEx) occurs in surrounding tissues following endothelial dysfunction. Such micro- and macrovascular complications develop over time and lead to edema, inflammation, and multi-organ dysfunction in CHF. However, a systemic examination of PEx in vital organs among different time windows of CHF has never been performed. In the present study, we investigated time-dependent PEx in several major visceral organs including heart, lung, liver, spleen, kidney, duodenum, ileum, cecum, and pancreas between sham-operated and CHF rats induced by myocardial infarction (MI). Methods: Plasma extravasation was determined by colorimetric evaluation of Evans Blue (EB) concentrations at 3 days, ∼10 weeks and 4 months following MI. Results: Data show that cardiac PEx was initially high at day 3 post MI and then gradually decreased but remained at a moderately high level at ∼10 weeks and 4 months post MI. Lung PEx began at day 3 and remained significantly elevated at both ∼10 weeks and 4 months post MI. Spleen PExwas significantly increased at ∼10 weeks and 4 months but not on day 3 post MI. Liver PEx occurred early at day 3 and remain significantly increased at ∼10 weeks and 4 months post MI. For the gastrointestinal (GI) organs including duodenum, ileum and cecum, there was a general trend that PEx level gradually increased following MI and reached statistical significance at either 10 weeks or 4 months post MI. Similar to GI PEx, renal PEx was significantly elevated at 4 months post MI. Discussion: In summary, we found that MI generally incites a timedependent PEx of multiple visceral organs. However, the PEx time window for individual organs in response to the MI challenge was different, suggesting that different mechanisms are involved in the pathogenesis of PEx in these vital organs during the development of CHF.

7.
medRxiv ; 2023 Dec 19.
Article in English | MEDLINE | ID: mdl-37873491

ABSTRACT

Identification of genes associated with nonsyndromic hearing loss is a crucial endeavor given the substantial number of individuals who remain without a diagnosis after even the most advanced genetic testing. PKHD1L1 was established as necessary for the formation of the cochlear hair-cell stereociliary coat and causes hearing loss in mice and zebrafish when mutated. We sought to determine if biallelic variants in PKHD1L1 also cause hearing loss in humans. Exome sequencing was performed on DNA of four families segregating autosomal recessive nonsyndromic sensorineural hearing loss. Compound heterozygous p.[(Gly129Ser)];p.[(Gly1314Val)] and p.[(Gly605Arg)];p[(Leu2818TyrfsTer5)], homozygous missense p.(His2479Gln) and nonsense p.(Arg3381Ter) variants were identified in PKHD1L1 that were predicted to be damaging using in silico pathogenicity prediction methods. In vitro functional analysis of two missense variants was performed using purified recombinant PKHD1L1 protein fragments. We then evaluated protein thermodynamic stability with and without the missense variants found in one of the families and performed a minigene splicing assay for another variant. In silico molecular modelling using AlphaFold2 and protein sequence alignment analysis were carried out to further explore potential variant effects on structure. In vitro functional assessment indicated that both engineered PKHD1L1 p.(Gly129Ser) and p.(Gly1314Val) mutant constructs significantly reduced the folding and structural stabilities of the expressed protein fragments, providing further evidence to support pathogenicity of these variants. Minigene assay of the c.1813G>A p.(Gly605Arg) variant, located at the boundary of exon 17, revealed exon skipping leading to an in-frame deletion of 48 amino acids. In silico molecular modelling exposed key structural features that might suggest PKHD1L1 protein destabilization. Multiple lines of evidence collectively associate PKHD1L1 with nonsyndromic mild-moderate to severe sensorineural hearing loss. PKHD1L1 testing in individuals with mild-moderate hearing loss may identify further affected families.

9.
Adv Funct Mater ; 33(2)2023 Jan 10.
Article in English | MEDLINE | ID: mdl-36816838

ABSTRACT

Peripheral nerve transection has a high prevalence and results in functional loss of affected limbs. The current clinical treatment using suture anastomosis significantly limits nerve recovery due to severe inflammation, secondary damage, and fibrosis. Fibrin glue, a commercial nerve adhesive as an alternative, avoids secondary damage but suffers from poor adhesion strength. To address their limitations, a highly efficacious nerve adhesive based on dual-crosslinking of dopamine-isothiocyanate modified hyaluronic acid and decellularized nerve matrix is reported in this paper. This dual-network nerve adhesive (DNNA) shows controllable gelation behaviors feasible for surgical applications, robust adhesion strength, and promoted axonal outgrowth in vitro. The in vivo therapeutic efficacy is tested using a rat-based sciatic nerve transection model. The DNNA decreases fibrosis and accelerates axon/myelin debris clearance at 10 days post-surgery, compared to suture and commercial fibrin glue treatments. At 10 weeks post-surgery, the strong adhesion and bioactivity allow DNNA to significantly decrease intraneural inflammation and fibrosis, enhance axon connection and remyelination, aid motor and sensory function recovery, as well as improve muscle contraction, compared to suture and fibrin treatments. Overall, this dual-network hydrogel with robust adhesion provides a rapid and highly efficacious nerve transection treatment to facilitate nerve repair and neuromuscular function recovery.

10.
Front Physiol ; 14: 1101408, 2023.
Article in English | MEDLINE | ID: mdl-36846321

ABSTRACT

Introduction: Acute lung injury (ALI) initiates an inflammatory cascade that impairs gas exchange, induces hypoxemia, and causes an increase in respiratory rate (fR). This stimulates the carotid body (CB) chemoreflex, a fundamental protective reflex that maintains oxygen homeostasis. Our previous study indicated that the chemoreflex is sensitized during the recovery from ALI. The superior cervical ganglion (SCG) is known to innervate the CB, and its electrical stimulation has been shown to significantly sensitize the chemoreflex in hypertensive and normotensive rats. We hypothesized that the SCG is involved in the chemoreflex sensitization post-ALI. Methods: We performed a bilateral SCG ganglionectomy (SCGx) or sham-SCGx (Sx) in male Sprague Dawley rats 2 weeks before inducing ALI (Week -2 i.e., W-2). ALI was induced using a single intra-tracheal instillation of bleomycin (bleo) (day 1). Resting-fR, Vt (Tidal Volume), and V̇ E (Minute Ventilation) were measured. The chemoreflex response to hypoxia (10% O2, 0% CO2) and normoxic-hypercapnia (21% O2, 5% CO2) were measured before surgery on W (-3), before bleo administration on W0 and on W4 post-bleo using whole-body plethysmography (WBP). Results: SCGx did not affect resting fR, Vt and V̇E as well as the chemoreflex responses to hypoxia and normoxic hypercapnia in either group prior to bleo. There was no significant difference in ALI-induced increase in resting fR between Sx and SCGx rats at W1 post-bleo. At W4 post-bleo, there were no significant differences in resting fR, Vt, and V̇E between Sx and SCGx rats. Consistent with our previous study, we observed a sensitized chemoreflex (delta fR) in response to hypoxia and normoxic hypercapnia in Sx rats at W4 post-bleo. However, at the same time, compared to Sx rats, the chemoreflex sensitivity was significantly less in SCGx rats in response to either hypoxia or normoxic hypercapnia. Discussion: These data suggest that SCG is involved in the chemoreflex sensitization during ALI recovery. Further understanding of the underlying mechanism will provide important information for the long-term goal of developing novel targeted therapeutic approaches to pulmonary diseases to improve clinical outcomes.

11.
J Clin Med ; 12(3)2023 Jan 19.
Article in English | MEDLINE | ID: mdl-36769450

ABSTRACT

The cardio-renal syndrome (CRS) type 2 is defined as a progressive loss of renal function following a primary insult to the myocardium that may be either acute or chronic but is accompanied by a decline in myocardial pump performance. The treatment of patients with CRS is difficult, and the disease often progresses to end-stage renal disease that is refractory to conventional therapy. While a good deal of information is known concerning renal injury in the CRS, less is understood about how reflex control of renal sympathetic nerve activity affects this syndrome. In this review, we provide insight into the role of the renal nerves, both from the afferent or sensory side and from the efferent side, in mediating renal dysfunction in CRS. We discuss how interventions such as renal denervation and abrogation of systemic reflexes may be used to alleviate renal dysfunction in the setting of chronic heart failure. We specifically focus on a novel cardiac sensory reflex that is sensitized in heart failure and activates the sympathetic nervous system, especially outflow to the kidney. This so-called Cardiac Sympathetic Afferent Reflex (CSAR) can be ablated using the potent neurotoxin resinferitoxin due to the high expression of Transient Receptor Potential Vanilloid 1 (TRPV1) receptors. Following ablation of the CSAR, several markers of renal dysfunction are reversed in the post-myocardial infarction heart failure state. This review puts forth the novel idea of neuromodulation at the cardiac level in the treatment of CRS Type 2.

12.
Front Physiol ; 13: 1009607, 2022.
Article in English | MEDLINE | ID: mdl-36338487

ABSTRACT

Acute lung injury (ALI) induces inflammation that disrupts the normal alveolar-capillary endothelial barrier which impairs gas exchange to induce hypoxemia that reflexively increases respiration. The neural mechanisms underlying the respiratory dysfunction during ALI are not fully understood. The purpose of this study was to investigate the role of the chemoreflex in mediating abnormal ventilation during acute (early) and recovery (late) stages of ALI. We hypothesized that the increase in respiratory rate (fR) during post-ALI is mediated by a sensitized chemoreflex. ALI was induced in male Sprague-Dawley rats using a single intra-tracheal injection of bleomycin (Bleo: low-dose = 1.25 mg/Kg or high-dose = 2.5 mg/Kg) (day 1) and respiratory variables- fR, Vt (Tidal Volume), and VE (Minute Ventilation) in response to 10% hypoxia (10% O2, 0% CO2) and 5% hypercapnia/21% normoxia (21% O2, 5% CO2) were measured weekly from W0-W4 using whole-body plethysmography (WBP). Our data indicate sensitization (∆fR = 93 ± 31 bpm, p < 0.0001) of the chemoreflex at W1 post-ALI in response to hypoxic/hypercapnic gas challenge in the low-dose bleo (moderate ALI) group and a blunted chemoreflex (∆fR = -0.97 ± 42 bpm, p < 0.0001) at W1 post-ALI in the high-dose bleo (severe ALI) group. During recovery from ALI, at W3-W4, both low-dose and high-dose groups exhibited a sensitized chemoreflex in response to hypoxia and normoxic-hypercapnia. We then hypothesized that the blunted chemoreflex at W1 post-ALI in the high-dose bleo group could be due to near maximal tonic activation of chemoreceptors, called the "ceiling effect". To test this possibility, 90% hyperoxia (90% O2, 0% CO2) was given to bleo treated rats to inhibit the chemoreflex. Our results showed no changes in fR, suggesting absence of the tonic chemoreflex activation in response to hypoxia at W1 post-ALI. These data suggest that during the acute stage of moderate (low-dose bleo) and severe (high-dose bleo) ALI, chemoreflex activity trends to be slightly sensitized and blunted, respectively while it becomes significantly sensitized during the recovery stage. Future studies are required to examine the molecular/cellular mechanisms underlying the time-course changes in chemoreflex sensitivity post-ALI.

13.
Front Microbiol ; 13: 921549, 2022.
Article in English | MEDLINE | ID: mdl-35910642

ABSTRACT

In the cold regions of China, lignin-rich corn straw accumulates at high levels due to low temperatures. The application of psychrotrophic lignin-degrading bacteria should be an effective means of overcoming the low-temperature limit for lignin degradation and promoting the utilization of corn straw. However, this application is limited by the lack of suitable strains for decomposition of lignin; furthermore, the metabolic mechanism of psychrotrophic lignin-degrading bacteria is unclear. Here, the whole genome of the psychrotrophic lignin-degrading bacterium Arthrobacter sp. C2, isolated in our previous work, was sequenced. Comparative genomics revealed that C2 contained unique genes related to lignin degradation and low-temperature adaptability. DyP may participate in lignin degradation and may be a cold-adapted enzyme. Moreover, DyP was proven to catalyze lignin Cα-Cß bond cleavage. Deletion and complementation of the DyP gene verified its ability to catalyze the first-step reaction of lignin degradation. Comparative transcriptomic analysis revealed that the transcriptional expression of the DyP gene was upregulated, and the genetic compensation mechanism allowed C2ΔDyP to degrade lignin, which provided novel insights into the survival strategy of the psychrotrophic mutant strain C2ΔdyP. This study improved our understanding of the metabolic mechanism of psychrotrophic lignin-degrading bacteria and provided potential application options for energy-saving production using cold-adapted lignin-degrading enzymes.

14.
JACC Basic Transl Sci ; 7(6): 582-596, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35818505

ABSTRACT

Cardiorenal syndrome type 2 (CRS2) is defined as a chronic cardiovascular disease, usually chronic heart failure (CHF), resulting in chronic kidney disease. We hypothesized that the cardiac spinal afferent reflex (CSAR) plays a critical role in the development of CRS2. Our data suggest that cardiac afferent ablation by resiniferatoxin not only improves cardiac function but also benefits the kidneys and increases long-term survival in the myocardial infarction model of CHF. We also found that renal denervation has a similar reno-protective effect in CHF rats. We believe this novel work contributes to the development of a unique neuromodulation therapy to treat CHF patients.

16.
Front Physiol ; 13: 777072, 2022.
Article in English | MEDLINE | ID: mdl-35173628

ABSTRACT

Acute lung injury (ALI) is characterized by the abrupt onset of clinically significant hypoxemia in the context of non-hydrostatic pulmonary edema. Acute lung injury is associated with cytokine release and plasma extravasation (PEx) that can cause pulmonary edema and subsequently acute respiratory distress syndrome (ARDS). Therefore, it is critical we understand the relationship between ALI and lung PEx. In addition, it is also important to assess PEx in the lungs and other organs post-ALI since ALI/ARDS often causes multi-organ failure. We hypothesized that ALI induces time-dependent lung PEx, which promotes extravasation in the heart, liver, kidney, spleen, pancreas, and gastrointestinal (GI) tract, in a time-dependent manner. To test our hypothesis, we administered bleomycin or saline via tracheal intubation in 8-week-old Sprague Dawley rats. At the terminal experiments, Evans Blue was injected (IV) through the femoral vein to allow for the visualization of PEx. Plasma extravasation of desired organs was evaluated at 3-, 7-, 14-, 21-, and 28-days after bleomycin or saline treatment by evaluating Evans Blue concentrations calorimetrically at fluorescence excitation wavelength of 620 nm (bandwidth 10 nm) and an emission wavelength of 680 nm (bandwidth 40 nm). Data show that ALI induces lung PEx beginning at day 3 and peaking between 7 and 21 days. Extravasation was also seen in all organs at varying degrees beginning at day 3 and peaking between days 7 and 14. Resolution appears to start after day 21 and continues past day 28. We conclude that ALI caused by bleomycin incites a time-dependent PEx of the lungs and multiple other organs.

17.
Heliyon ; 8(1): e08847, 2022 Jan.
Article in English | MEDLINE | ID: mdl-35141435

ABSTRACT

INTRODUCTION: A systematic analysis of clinical trials was performed in order to assess the effectiveness and risks of bilateral renal denervation (RDN) in patients with chronic heart failure with reduced ejection fraction (HFrEF). METHODS: A systematic review was conducted of all clinical trials exploring the effectiveness of RDN in patients with HF who had reduced (<50%) EF. Primary outcomes were NYHA class, 6-min walk test, N-terminal pro-B-type natriuretic peptide (NT-proBNP) levels, left ventricular ejection fraction (LVEF) and other cardiac parameters including left ventricular end-systolic diameter (LVESD), left ventricular end-diastolic diameter (LVEDD), and left atrium diameter (LAD). Secondary outcomes were systolic blood pressure (SBP), diastolic blood pressure (DBP), heart rate (HR), glomerular filtration rate (GFR), and creatinine. RESULTS: Seven studies were included in this analysis. From baseline to 6 months after RDN, the pooled mean NYHA class was decreased (mean difference [MD], -0.9; 95% confidence interval [CI], -1.6 to -0.2; P = 0.018), the mean 6-min walk test was increased (MD, 79.5 m; 95% CI, 26.9 to 132.1; P = 0.003), and the average NT-proBNP level was decreased (MD, -520.6 pg/mL; 95% CI, -1128.4 to 87.2; P = 0.093). Bilateral RDN increased the LVEF (MD, 5.7%; 95% CI, 1.6 to 9.6; P = 0.004), decreased the LVESD (MD, -0.4 cm; 95% CI, -0.5 to -0.2; P < 0.001), decreased the LVEDD (MD, -0.5 cm; 95% CI, -0.6 to -0.3; P < 0.001), and decreased the LAD (MD, -0.4 cm; 95% CI, -0.8 to 0; P = 0.045). In addition, RDN significantly decreased systolic BP (MD, -9.4 mmHg; 95% CI, -16.3 to -2.4; P = 0.008) and diastolic BP (MD, -4.9 mmHg; 95% CI, -9.5 to -0.4; P = 0.033), and decreased HR (MD, -4.5 bpm; 95% CI, -8.2to -0.9; P = 0.015). RDN did not significantly change GFR (MD, 7.9; 95% CI, -5.0 to 20.8; P = 0.230), or serum creatinine levels (MD, -7.2; 95% CI, -23.7 to 9.4; P = 0.397). CONCLUSION: Bilateral RDN appears safe and well-tolerated in patients with HF. RDN improved the signs and symptoms of HF and slightly decreased systolic and diastolic BP without affecting renal function in the clinical trials performed to date.

18.
Oxid Med Cell Longev ; 2021: 5662550, 2021.
Article in English | MEDLINE | ID: mdl-34659636

ABSTRACT

Concomitant exotropia have obvious symptoms of eye discomfort in adults, and the presence of ocular surface inflammation in patients may be important mediators between concomitant exotropia and dry eye. Oculus Keratograph eye comprehensive analyzer was performed to detect noninvasive tear break time, noninvasive tear height, and eye red index, while the ocular surface disease index and schirmer I testing were made. The levels of IL-6, IL-10, IL-17A, IL-12P70, INF-γ, and TNF-α were detected in tears in patients with concomitant exotropia and healthy controls matched by age and gender through the Simoa technology. IL-6 was significantly higher in patients with concomitant exotropia (4.683 ± 1.329) pg/mL than that in normal group (1.455 ± 0.391) pg/mL, p = 0.0304. TNF-α was also significantly higher in patients (0.2095 ± 0.0703) pg/mL than normal group (0.0513 ± 0.0149) pg/mL, p = 0.0397. The levels of inflammatory factors in strabismic patients vs. normal controls were as follows: IL-17A (0.1551 pg/mL︰0.0793 pg/mL), IL-10 (0.3358 pg/mL︰0.0513 pg/mL), IL-12p70 (0.0253 pg/mL︰0.0099 pg/mL), and INF-γ (0.0284 pg/mL︰0.009 pg/mL) were detected, and the median of them in concomitant strabismus was 1.96-6.55-fold as much as the control group. High levels of inflammatory cytokines in tears of patients with concomitant exotropia, which may be a potentially factor promoted the occurrence of dry eye in the patients with concomitant exotropia.


Subject(s)
Cytokines/metabolism , Dry Eye Syndromes/physiopathology , Exotropia/physiopathology , Inflammation/metabolism , Tears/metabolism , Child , Female , Humans , Male , Tears/cytology
19.
Am J Physiol Heart Circ Physiol ; 321(2): H461-H474, 2021 08 01.
Article in English | MEDLINE | ID: mdl-34270374

ABSTRACT

An exaggerated exercise pressor reflex (EPR) causes excessive sympathoexcitation and exercise intolerance during physical activity in the chronic heart failure (CHF) state. Muscle afferent sensitization contributes to the genesis of the exaggerated EPR in CHF. However, the cellular mechanisms underlying muscle afferent sensitization in CHF remain unclear. Considering that voltage-gated potassium (Kv) channels critically regulate afferent neuronal excitability, we examined the potential role of Kv channels in mediating the sensitized EPR in male rats with CHF. Real-time reverse transcription-polymerase chain reaction (RT-PCR) and Western blotting experiments demonstrate that both mRNA and protein expressions of multiple Kv channel isoforms (Kv1.4, Kv3.4, Kv4.2, and Kv4.3) were downregulated in lumbar dorsal root ganglions (DRGs) of CHF rats compared with sham rats. Immunofluorescence data demonstrate significant decreased Kv channel staining in both NF200-positive and IB4-positive lumbar DRG neurons in CHF rats compared with sham rats. Data from patch-clamp experiments demonstrate that the total Kv current, especially IA, was dramatically decreased in medium-sized IB4-negative muscle afferent neurons (a subpopulation containing mostly Aδ neurons) from CHF rats compared with sham rats, indicating a potential functional loss of Kv channels in muscle afferent Aδ neurons. In in vivo experiments, adenoviral overexpression of Kv4.3 in lumbar DRGs for 1 wk attenuated the exaggerated EPR induced by muscle static contraction and the mechanoreflex by passive stretch without affecting the blunted cardiovascular response to hindlimb arterial injection of capsaicin in CHF rats. These data suggest that Kv channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in CHF.NEW & NOTEWORTHY The primary finding of this manuscript is that voltage-gated potassium (Kv) channel dysfunction in DRGs plays a critical role in mediating the exaggerated EPR and muscle afferent sensitization in chronic heart failure (CHF). We propose that manipulation of Kv channels in DRG neurons could be considered as a potential new approach to reduce the exaggerated sympathoexcitation and to improve exercise intolerance in CHF, which can ultimately facilitate an improved quality of life and reduce mortality.


Subject(s)
Exercise Tolerance/physiology , Ganglia, Spinal/physiopathology , Heart Failure/physiopathology , Neurons, Afferent/metabolism , Potassium Channels, Voltage-Gated/metabolism , Reflex, Abnormal , Afferent Pathways , Animals , Disease Models, Animal , Ganglia, Spinal/metabolism , Heart Failure/metabolism , Kv1.4 Potassium Channel/metabolism , Male , Muscle, Skeletal/innervation , Patch-Clamp Techniques , Rats , Rats, Sprague-Dawley , Reflex , Shal Potassium Channels/genetics , Shal Potassium Channels/metabolism , Shaw Potassium Channels/metabolism
20.
Acta Physiol (Oxf) ; 232(2): e13657, 2021 06.
Article in English | MEDLINE | ID: mdl-33817984

ABSTRACT

AIM: Patients suffering from acute lung injury (ALI) are at high risk of developing cardiac arrhythmias. We hypothesized that stellate ganglia (SG) neural inflammation contributes to ALI-induced arrhythmia. METHODS: We created an ALI rat model using a single tracheal instillation of bleomycin (2.5 mg/kg), with saline as a sham control. We recorded ECGs by implanted radiotelemetry in male bleomycin and sham rats treated with and without oral minocycline (20 mg/kg/d), an anti-inflammatory drug that inhibits microglia/macrophage activation. The SG neuronal excitability was assessed by electrophysiology experiments. RESULTS: ECG data showed that bleomycin-exposed rats exhibited significantly more spontaneous premature ventricular contractions (PVCs) from 1- to 3-week post-induction compared with sham rats, which was mitigated by chronic oral administration of minocycline. The bleomycin-exposed rats displayed a robust increase in both the number of Iba1-positive macrophages and protein expression of interferon regulatory factor 8 in the SG starting as early at 1-week post-exposure and lasted for at least 4 weeks, which was largely attenuated by minocycline. Heart rate variability analysis indicated autonomic imbalance during the first 2-week post-bleomycin, which was significantly attenuated by minocycline. Electrical stimulation of the decentralized SG triggered more PVCs in bleomycin-exposed rats than sham and bleomycin + minocycline rats. Patch-clamp data demonstrated enhanced SG neuronal excitability in the bleomycin-exposed rats, which was attenuated by minocycline. Co-culture of lipopolysaccharide (LPS)-pretreated macrophages with normal SG neurons enhanced SG neuronal excitability. CONCLUSION: Macrophage activation in the SG contributes to arrhythmogenesis in bleomycin-induced ALI in male rats.


Subject(s)
Lung Injury , Animals , Arrhythmias, Cardiac/chemically induced , Bleomycin/toxicity , Humans , Lung , Macrophage Activation , Male , Microglia , Rats , Stellate Ganglion
SELECTION OF CITATIONS
SEARCH DETAIL
...