Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters










Database
Publication year range
1.
Sci Total Environ ; 682: 532-540, 2019 Sep 10.
Article in English | MEDLINE | ID: mdl-31129541

ABSTRACT

As a solution of the sludge loss in the treatment of saline wastewater, the granulation of halophilic sludge was explored in this study. The inoculated estuarine sediment was granulated to an average diameter of 1155 ±â€¯102 µm under the selective settling pressure in the airlift sequencing batch reactor (SBR) when the influent organic loading rate (OLR) was doubled to 0.36 g COD/L·day. The results indicated that the OLR doubled the amount of total extracellular polymeric substance (EPS) and that protein was predominant in the EPS (72.8 ±â€¯2.0%). The correlation between aggregate size and protein content was better than that between aggregate size and polysaccharide content. The amount of alginate-like exopolysaccharides (ALE) increased linearly at the mature granular stage, co-occurring with the compact and elastic structure of the granules. According to the results of 16S rRNA high -throughput sequencing, the Shannon-Weaver index of mature granule decreased by >50% compared to the inoculated sediment. Bacteria of Propionibacteriaceae family constituted 34% of the population in granules and were in symbiotic relationship with halophiles of family Rhodocyclaceae, Vibrionaceae, Flavobacteriaceae, and Cryomorphaceae. The aerobic halophilic granular sludge showed COD removal efficiency of 90.9 ±â€¯0.8% and ammonia removal efficiency of 72.6 ±â€¯4.0% for 30 g/L saline wastewater. An average nitrite accumulation ratio of 94.5 ±â€¯2.9% was observed during nitrification. Granulation of halophilic sludge provides an effective solution to the saline sludge loss problem, which is a step forward to realize the biological treatment of saline wastewater by halophiles.


Subject(s)
Waste Disposal, Fluid/methods , Ammonia , Bacteria , Bioreactors , Estuaries , Extracellular Polymeric Substance Matrix , Geologic Sediments/chemistry , Nitrites , Nitrogen , Pressure , Sewage/chemistry , Wastewater/chemistry
2.
Huan Jing Ke Xue ; 40(1): 336-342, 2019 Jan 08.
Article in Chinese | MEDLINE | ID: mdl-30628291

ABSTRACT

To accumulate endogenous polymers during the aerobic phase, the aerobic/anoxic-feast/famine (O/A-F/F) selection mode can be used. It can also be used in situ for endogenous denitrification by activated sludge during the anoxic phase. To further explore the effect of carbon sources on the activated sludge accumulation of endogenous polymers and endogenous denitrification, this study used acetic and glucose as the main carbon sources to investigate the accumulation of endogenous polymers, endogenous denitrification, and the structure and function of enriched activated sludge. The results show that acetic (Ac-SBR) and glucose (Gc-SBR) as the main carbon source systems achieved a 40 mg·L-1 nitrate removal by endogenous denitrification when the influent chemical oxygen demand (COD) was~500 mg·L-1 in the O/A-F/F selection mode. Both the Ac-SBR and Gc-SBR achieved partial denitrification, but the nitrite accumulation of the Ac-SBR was higher than that of the Gc-SBR. Acetic is favorable for the accumulation of endogenous polyhydroxyalkanoate (PHA); PHA drives the endogenous denitrification. The yield of PHA was 0.52 and the denitrification rate (DNR) was 9.65 mg·(L·h)-1. The Gc-SBR system achieved the simultaneous accumulation of PHA and glycogen (Gly). The yield of Gly was higher than that of PHA and the DNR driven by Gly was 4.35 mg·(L·h)-1. The Gly was the main driving force to achieve endogenous denitrification and contributed to 77% of the total nitrogen removal. The 16S rRNA high-throughput sequencing analysis of activated sludge flora shows that the class of ß-Proteobacteria in the Proteobacteria was dominant, with an abundance of 40.56% in the Ac-SBR. However, the abundance of ß-Proteobacteria was only 18.05% in the Gc-SBR. The class of α-Proteobacteria contributes to glycogen accumulation in the Gc-SBR. The PHA can be accumulated by ß-Proteobacteria, Unclassified Bacteroidetes, and Lgnavibacteria in the Ac-SBR.


Subject(s)
Bacteria/classification , Bioreactors/microbiology , Carbon/chemistry , Denitrification , High-Throughput Nucleotide Sequencing , Nitrogen , Polyhydroxyalkanoates/analysis , Polymers/analysis , RNA, Ribosomal, 16S/genetics , Sewage/microbiology , Waste Disposal, Fluid
3.
Mol Cell Biochem ; 386(1-2): 211-22, 2014 Jan.
Article in English | MEDLINE | ID: mdl-24126784

ABSTRACT

The Pax3 gene has been proven to play a crucial role in determining myogenic progenitor cell fate during embryonic myogenesis; however, the molecular role of Pax3 in myoblast development during later stages of myogenesis is unknown. We hypothesized that Pax3 would function in myoblast proliferation and differentiation; therefore, we employed three short hairpin RNAs (shRNAs) (shRNA1, shRNA2, and shRNA3) that target Pax3 to characterize the function of Pax3 in duck myoblast development. The mRNA and protein expression levels of Pax3 in duck myoblasts were detected using real-time PCR and Western blotting. Cell proliferation was assessed using the MTT and BrdU assays, while cell differentiation was assayed using immunofluorescence labeling with a MyoG antibody. Additionally, folic acid (FA), which is a rescue tool, was added into the medium of duck myoblasts to indirectly examine the function of Pax3 on duck myoblast proliferation and differentiation. The results revealed that one of the shRNA vectors, shRNA1, could significantly and stably reduce the expression of Pax3 (P < 0.05). Silencing Pax3 by shRNA1 significantly reduced the proliferation and differentiation of duck myoblasts (P < 0.05) due to downregulated expression of myogenic regulator factors. These trends could be rescued by adding FA; and Pax7, a paralog gene of Pax3, was involved in those processes. Overall, Pax3 had a positive function in duck myoblast proliferation and differentiation by modulating the expression of myogenic regulation factors, and shRNA targeting of Pax3 might be a new approach for understanding the function of Pax3 in the development of diverse tissues.


Subject(s)
Cell Differentiation/genetics , Cell Proliferation , Gene Silencing , Myoblasts/cytology , Paired Box Transcription Factors/genetics , RNA, Small Interfering/genetics , Animals , Base Sequence , Blotting, Western , Cells, Cultured , Ducks , Fluorescent Antibody Technique , Plasmids , Real-Time Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...