Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
In Vivo ; 37(2): 661-666, 2023.
Article in English | MEDLINE | ID: mdl-36881067

ABSTRACT

BACKGROUND/AIM: Diabetic retinopathy (DR) is the most common microvascular complication of diabetes and a major cause of blindness in working-age adults. Diosgenin (DG), a natural steroidal sapogenin extracted from fenugreek seeds and wild yam roots, has hypolipidemic, hypoglycemic, anticancer, and anti-inflammatory properties. Given its pharmacological effects, we speculated that DG may be a promising treatment for DR. Therefore, this study was aimed at evaluating the effectiveness of DG in preventing or slowing DR progression in a mouse model (+Leprdb/+Leprdb strain) of type 2 diabetes (T2D). MATERIALS AND METHODS: DG (5.0 mg/kg body weight) or phosphate-buffered saline (PBS) was administered to 8-week-old T2D mice via oral gavage daily for 24 weeks. Paraffin-embedded eye tissues from the mice were collected and stained with hematoxylin and eosin to evaluate retinal histopathology. Apoptosis-related proteins BCL2-associated X (Bax), B-cell lymphoma 2 (Bcl-2), and cleaved caspase-3 were evaluated by western blotting of mouse retinas. RESULTS: Body weight was slightly reduced in the DG-treated group; however, glucose levels were not markedly different between the DG- and PBS-treated groups. Total retinal thickness, thickness of the photoreceptor and outer nuclear layers, and loss of ganglion cells significantly improved in the retina of the DG-treated T2D mice compared with those in the PBS-treated T2D mice. Cleaved caspase-3 level significantly decreased in the retina of the DG-treated T2D mice. Conclusion: DG alleviates DR pathology and exerts a protective effect on the T2D mouse retina. The inhibitory effects of DG on DR may involve mechanisms of the anti-apoptotic pathway.


Subject(s)
Diabetes Mellitus, Experimental , Diabetes Mellitus, Type 2 , Diabetic Retinopathy , Diosgenin , Sapogenins , Animals , Mice , Diabetic Retinopathy/etiology , Diabetic Retinopathy/genetics , Caspase 3 , Sapogenins/pharmacology , Diabetes Mellitus, Type 2/complications , Diabetes Mellitus, Type 2/drug therapy , Diabetes Mellitus, Experimental/complications , Diabetes Mellitus, Experimental/drug therapy , Body Weight , Diosgenin/pharmacology
2.
Cells ; 11(20)2022 10 16.
Article in English | MEDLINE | ID: mdl-36291120

ABSTRACT

Daphnoretin extracted from the stem and roots of Wikstroemia indica (L.) C.A. Mey has been shown to possess antiviral and antitumor activities. Herein, we hypothesized that daphnoretin might induce megakaryocytic differentiation, thereby inhibiting the proliferation of cells and serving as a differentiation therapy agent for chronic myeloid leukemia (CML). Daphnoretin-treated K562 and HEL cells were examined for growth inhibition, cell morphology, and megakaryocyte-specific markers. Potential mechanisms of megakaryocytic differentiation of daphnoretin-treated K562 cells were evaluated. The results showed that daphnoretin inhibited the growth of K562 and HEL cells in a dose- and time-dependent manner. Flow cytometry analyses revealed that daphnoretin treatment slightly increased the proportion of sub-G1 and polyploid cells compared to that of dimethyl sulfoxide (DMSO)-treated control cells. Morphological examination showed that daphnoretin-treated K562 and HEL cells exhibited enlarged contours and multinucleation as megakaryocytic characteristics compared to DMSO-treated control cells. Daphnoretin treatment also dramatically enhanced the expression of megakaryocytic markers CD61 and CD41. Under optimal megakaryocytic differentiation conditions, daphnoretin increased the phosphorylation of STAT3 but not STAT5. In summary, daphnoretin inhibited cell growth and induced megakaryocytic differentiation in K562 and HEL cells. The efficacy of daphnoretin in vivo and in patients with CML may need further investigations for validation.


Subject(s)
Leukemia, Myelogenous, Chronic, BCR-ABL Positive , Leukemia, Myeloid , Humans , Dimethyl Sulfoxide/pharmacology , Cell Differentiation , Leukemia, Myeloid/metabolism , Leukemia, Myelogenous, Chronic, BCR-ABL Positive/drug therapy , Antiviral Agents/pharmacology
SELECTION OF CITATIONS
SEARCH DETAIL
...