Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Basic Res Cardiol ; 119(1): 169-192, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38147128

ABSTRACT

Adult mammalian cardiomyocytes have minimal cell cycle capacity, which leads to poor regeneration after cardiac injury such as myocardial infarction. Many positive regulators of cardiomyocyte cell cycle and cardioprotective signals have been identified, but extracellular signals that suppress cardiomyocyte proliferation are poorly understood. We profiled receptors enriched in postnatal cardiomyocytes, and found that very-low-density-lipoprotein receptor (Vldlr) inhibits neonatal cardiomyocyte cell cycle. Paradoxically, Reelin, the well-known Vldlr ligand, expressed in cardiac Schwann cells and lymphatic endothelial cells, promotes neonatal cardiomyocyte proliferation. Thrombospondin1 (TSP-1), another ligand of Vldlr highly expressed in adult heart, was then found to inhibit cardiomyocyte proliferation through Vldlr, and may contribute to Vldlr's overall repression on proliferation. Mechanistically, Rac1 and subsequent Yap phosphorylation and nucleus translocation mediate the regulation of the cardiomyocyte cell cycle by TSP-1/Reelin-Vldlr signaling. Importantly, Reln mutant neonatal mice displayed impaired cardiomyocyte proliferation and cardiac regeneration after apical resection, while cardiac-specific Thbs1 deletion and cardiomyocyte-specific Vldlr deletion promote cardiomyocyte proliferation and are cardioprotective after myocardial infarction. Our results identified a novel role of Vldlr in consolidating extracellular signals to regulate cardiomyocyte cell cycle activity and survival, and the overall suppressive TSP-1-Vldlr signal may contribute to the poor cardiac repair capacity of adult mammals.


Subject(s)
Myocardial Infarction , Thrombospondin 1 , Animals , Mice , Cell Proliferation , Endothelial Cells/metabolism , Ligands , Mammals , Mice, Knockout , Myocardial Infarction/metabolism , Myocytes, Cardiac/metabolism , Regeneration , Thrombospondin 1/metabolism
2.
Cardiovasc Res ; 119(2): 536-550, 2023 03 31.
Article in English | MEDLINE | ID: mdl-35640820

ABSTRACT

AIMS: Post-natal maturation of mammalian cardiomyocytes proceeds rapidly after birth, with most of the myocytes exiting cell cycle, becoming binucleated, and adopting oxidative phosphorylation as the primary metabolic route. The triggers and transcriptional programmes regulating cardiomyocyte maturation have not been fully understood yet. We performed single-cell RNA-Seq in post-natal rat hearts in order to identify the important factors for this process. METHODS AND RESULTS: Single-cell RNA-Seq profiling was performed of post-natal Day 1 and Day 7 rat hearts, and we found that members of the activating protein 1 (AP-1) transcription factors showed a transient up-regulation in the maturing cardiomyocytes, suggesting their functional involvement in the process. Activating members of the AP-1 family by palmitate or adrenergic stimulation inhibited cardiomyocyte cytokinesis and promoted cardiomyocyte maturation. In contrast, knocking down AP-1 members Atf3 and Jun promoted cardiomyocyte cytokinesis, reduced polyploidy, and inhibited maturation. Mechanistically, RNA-Seq results and rescue experiments indicated that AP-1 members activate the expression of fatty acid metabolic genes to promote cardiomyocyte maturation. Finally, intraperitoneal injection of AP-1 inhibitor T-5224 in neonatal mice inhibits cardiomyocyte maturation in vivo. CONCLUSION: Our results are the first evidence implicating AP-1 transcription factors in post-natal cardiomyocyte maturation both in vitro and in vivo, which expand our understanding of the molecular mechanism of cardiomyocyte maturation, and may lead to novel therapies to treat congenital heart diseases.


Subject(s)
Myocytes, Cardiac , Transcription Factor AP-1 , Rats , Mice , Animals , Myocytes, Cardiac/metabolism , Transcription Factor AP-1/genetics , Transcription Factor AP-1/metabolism , Cell Proliferation/genetics , Cytokinesis , Cell Cycle , Mammals
SELECTION OF CITATIONS
SEARCH DETAIL
...