Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 39
Filter
Add more filters










Publication year range
1.
Nat Metab ; 6(4): 741-763, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38664583

ABSTRACT

Due to the rise in overnutrition, the incidence of obesity-induced hepatocellular carcinoma (HCC) will continue to escalate; however, our understanding of the obesity to HCC developmental axis is limited. We constructed a single-cell atlas to interrogate the dynamic transcriptomic changes during hepatocarcinogenesis in mice. Here we identify fatty acid binding protein 5 (FABP5) as a driver of obesity-induced HCC. Analysis of transformed cells reveals that FABP5 inhibition and silencing predispose cancer cells to lipid peroxidation and ferroptosis-induced cell death. Pharmacological inhibition and genetic ablation of FABP5 ameliorates the HCC burden in male mice, corresponding to enhanced ferroptosis in the tumour. Moreover, FABP5 inhibition induces a pro-inflammatory tumour microenvironment characterized by tumour-associated macrophages with increased expression of the co-stimulatory molecules CD80 and CD86 and increased CD8+ T cell activation. Our work unravels the dual functional role of FABP5 in diet-induced HCC, inducing the transformation of hepatocytes and an immunosuppressive phenotype of tumour-associated macrophages and illustrates FABP5 inhibition as a potential therapeutic approach.


Subject(s)
Carcinoma, Hepatocellular , Fatty Acid-Binding Proteins , Ferroptosis , Liver Neoplasms , Neoplasm Proteins , Obesity , Carcinoma, Hepatocellular/metabolism , Carcinoma, Hepatocellular/etiology , Animals , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/genetics , Mice , Liver Neoplasms/metabolism , Liver Neoplasms/etiology , Obesity/complications , Obesity/metabolism , Male , Tumor Microenvironment/immunology , Humans , Mice, Inbred C57BL , Tumor-Associated Macrophages/metabolism , Tumor-Associated Macrophages/immunology
2.
Plant Dis ; 2024 Mar 27.
Article in English | MEDLINE | ID: mdl-38537137

ABSTRACT

Bacterial spot is one of the most serious diseases of peach caused by the pathogen Xanthomonas arboricola pv. pruni (XAP), leading to early defoliation and unmarketable fruit. The pathogen can overwinter in peach twigs and form spring cankers, which are considered the primary inoculum source for early season leaf and fruitlet infection. The amount of overwintering bacterial inoculum plays a critical role for the bacterial spot development, but no reliable quantification method is available. Thus, we developed a long-amplicon propidium monoazide (PMA)-qPCR assay for specific detection of viable XAP cells. The optimized PMA-qPCR assay used 20 µM of PMAxx for pure bacterial suspensions and 100 µM for peach twig tissues. The Qiagen Plant Pro Kit with an additional lysozyme digestion step was the DNA extraction protocol that yielded the best detection sensitivity with the bacteria-spiked peach twig extracts. The PMA-qPCR assay was tested with different mixtures of viable and heat-killed XAP cells in pure bacterial suspensions and bacteria-spiked peach twig tissues. The results showed that this assay enabled sensitive, specific, and accurate quantification of viable XAP cells as low as 103 CFU/ml with the presence of up to 107 CFU/ml of dead XAP cells, while suppressing the amplification of DNA from dead cells. For mixtures of viable and dead cells, the PMA-qPCR results were linearly correlated with the predicted concentrations of viable XAP (R2 > 0.98). Thus, the PMA-qPCR assay will be a suitable tool for quantifying overwintering XAP population on peach trees.

3.
Cell Transplant ; 33: 9636897241236584, 2024.
Article in English | MEDLINE | ID: mdl-38501500

ABSTRACT

Aging, space flight, and prolonged bed rest have all been linked to bone loss, and no effective treatments are clinically available at present. Here, with the rodent hindlimb unloading (HU) model, we report that the bone marrow (BM) microenvironment was significantly altered, with an increased number of myeloid cells and elevated inflammatory cytokines. In such inflammatory BM, the osteoclast-mediated bone resorption was greatly enhanced, leading to a shifted bone remodeling balance that ultimately ends up with disuse-induced osteoporosis. Using Piezo1 conditional knockout (KO) mice (Piezo1fl/fl;LepRCre), we proved that lack of mechanical stimuli on LepR+ mesenchymal stem cells (MSCs) is the main reason for the pathological BM inflammation. Mechanically, the secretome of MSCs was regulated by mechanical stimuli. Inadequate mechanical load leads to increased production of inflammatory cytokines, such as interleukin (IL)-1α, IL-6, macrophage colony-stimulating factor 1 (M-CSF-1), and so on, which promotes monocyte proliferation and osteoclastic differentiation. Interestingly, transplantation of 10% cyclic mechanical stretch (CMS)-treated MSCs into HU animals significantly alleviated the BM microenvironment and rebalanced bone remodeling. In summary, our research revealed a new mechanism underlying mechanical unloading-induced bone loss and suggested a novel stem cell-based therapy to potentially prevent disuse-induced osteoporosis.


Subject(s)
Bone Resorption , Osteoporosis , Mice , Animals , Secretome , Bone Resorption/pathology , Mice, Knockout , Inflammation , Cytokines , Ion Channels
4.
Osteoarthritis Cartilage ; 32(3): 266-280, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38035977

ABSTRACT

OBJECTIVE: Osteoarthritis (OA) is often accompanied by debilitating pain that is refractory to available analgesics due in part to the complexity of signaling molecules that drive OA pain and our inability to target these in parallel. Fatty acid binding protein 5 (FABP5) is a lipid chaperone that regulates inflammatory pain; however, its contribution to OA pain has not been characterized. DESIGN: This combined clinical and pre-clinical study utilized synovial tissues obtained from subjects with end-stage OA and rats with monoiodoacetate-induced OA. Cytokine and chemokine release from human synovia incubated with a selective FABP5 inhibitor was profiled with cytokine arrays and ELISA. Immunohistochemical analyses were conducted for FABP5 in human and rat synovium. The efficacy of FABP5 inhibitors on pain was assessed in OA rats using incapacitance as an outcome. RNA-seq was then performed to characterize the transcriptomic landscape of synovial gene expression in OA rats treated with FABP5 inhibitor or vehicle. RESULTS: FABP5 was expressed in human synovium and FABP5 inhibition reduced the secretion of pronociceptive cytokines (interleukin-6 [IL6], IL8) and chemokines (CCL2, CXCL1). In rats, FABP5 was upregulated in the OA synovium and its inhibition alleviated incapacitance. The transcriptome of the rat OA synovium exhibited >6000 differentially expressed genes, including the upregulation of numerous pronociceptive cytokines and chemokines. FABP5 inhibition blunted the upregulation of the majority of these pronociceptive mediators. CONCLUSIONS: FABP5 is expressed in the OA synovium and its inhibition suppresses pronociceptive signaling and pain, indicating that FABP5 inhibitors may constitute a novel class of analgesics to treat OA.


Subject(s)
Cytokines , Osteoarthritis , Humans , Rats , Animals , Cytokines/metabolism , Osteoarthritis/metabolism , Pain/metabolism , Chemokines/metabolism , Synovial Membrane/metabolism , Analgesics , Fatty Acid-Binding Proteins/genetics
5.
Psychopharmacology (Berl) ; 241(1): 119-138, 2024 Jan.
Article in English | MEDLINE | ID: mdl-37747506

ABSTRACT

RATIONALE: The endocannabinoid (eCB) system critically controls anxiety and fear-related behaviours. Anandamide (AEA), a prominent eCB ligand, is a hydrophobic lipid that requires chaperone proteins such as Fatty Acid Binding Proteins (FABPs) for intracellular transport. Intracellular AEA transport is necessary for degradation, so blocking FABP activity increases AEA neurotransmission. OBJECTIVE: To investigate the effects of a novel FABP5 inhibitor (SBFI-103) in the basolateral amygdala (BLA) on anxiety and fear memory. METHODS: We infused SBFI-103 (0.5 µg-5 µg) to the BLA of adult male Sprague Dawley rats and ran various anxiety and fear memory behavioural assays, neurophysiological recordings, and localized molecular signaling analyses. We also co-infused SBFI-103 with the AEA inhibitor, LEI-401 (3 µg and 10 µg) to investigate the potential role of AEA in these phenomena. RESULTS: Acute intra-BLA administration of SBFI-103 produced strong anxiolytic effects across multiple behavioural tests. Furthermore, animals exhibited acute and long-term accelerated associative fear memory extinction following intra-BLA FABP5 inhibition. In addition, BLA FABP5 inhibition induced strong modulatory effects on putative PFC pyramidal neurons along with significantly increased gamma oscillation power. Finally, we observed local BLA changes in the phosphorylation activity of various anxiety- and fear memory-related molecular biomarkers in the PI3K/Akt and MAPK/Erk signaling pathways. At all three levels of analyses, we found the functional effects of SBFI-103 depend on availability of the AEA ligand. CONCLUSIONS: These findings demonstrate a novel intra-BLA FABP5 signaling mechanism regulating anxiety and fear memory behaviours, neuronal activity states, local anxiety-related molecular pathways, and functional AEA modulation.


Subject(s)
Anti-Anxiety Agents , Basolateral Nuclear Complex , Animals , Male , Rats , Amygdala/metabolism , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/metabolism , Extinction, Psychological , Fatty Acid-Binding Proteins/metabolism , Fatty Acid-Binding Proteins/pharmacology , Fear/physiology , Ligands , Phosphatidylinositol 3-Kinases/metabolism , Phosphatidylinositol 3-Kinases/pharmacology , Rats, Sprague-Dawley
6.
Plant Sci ; 339: 111955, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38097048

ABSTRACT

Tomato yellow leaf curl disease (TYLCD), caused by Tomato yellow leaf curl virus (TYLCV), is one of the most destructive diseases in tomato cultivation. By comparing the phenotypic characteristics and virus quantities in the susceptible variety 'Cooperation 909 Red Tomatoes' and the resistant variety 'Huamei 204' after inoculation with TYLCV infectious clones, our study discovered that the root, stem and leaf growth of the susceptible variety 'Cooperation 909 Red Tomatoes' were severely hindered and the resistant variety 'Huamei 204' showed growth inhibition only in roots. TYLCV accumulation in roots were significantly higher than in leaves. Further, we examined the expression of key genes in the SA and JA signalling pathways in leaves, stems and roots and found the up-regulation of SA-signalling genes in all organs of the susceptible variety after inoculation with TYLCV clones. Interestingly, SlJAZ2 in roots of the resistant variety was significantly down-regulated upon TYLCV infection. Further, we silenced the SlNPR1 and SlCOI1 genes individually using virus induced gene silencing system in tomato plants. We found that viruses accumulated to a higher level in SlNPR1 silenced plants than wild type plants, and the virus quantity in roots was significantly increased in SlCOI1 silenced plants. These results provide new insights for advancing research in understanding tomato-TYLCV interaction.


Subject(s)
Begomovirus , Solanum lycopersicum , Solanum lycopersicum/genetics , RNA Interference , Begomovirus/physiology , Signal Transduction/genetics , Phenotype , Plant Diseases/genetics
7.
Nat Commun ; 14(1): 6395, 2023 Oct 13.
Article in English | MEDLINE | ID: mdl-37833262

ABSTRACT

Artificial intelligence (AI) has been widely applied in drug discovery with a major task as molecular property prediction. Despite booming techniques in molecular representation learning, key elements underlying molecular property prediction remain largely unexplored, which impedes further advancements in this field. Herein, we conduct an extensive evaluation of representative models using various representations on the MoleculeNet datasets, a suite of opioids-related datasets and two additional activity datasets from the literature. To investigate the predictive power in low-data and high-data space, a series of descriptors datasets of varying sizes are also assembled to evaluate the models. In total, we have trained 62,820 models, including 50,220 models on fixed representations, 4200 models on SMILES sequences and 8400 models on molecular graphs. Based on extensive experimentation and rigorous comparison, we show that representation learning models exhibit limited performance in molecular property prediction in most datasets. Besides, multiple key elements underlying molecular property prediction can affect the evaluation results. Furthermore, we show that activity cliffs can significantly impact model prediction. Finally, we explore into potential causes why representation learning models can fail and show that dataset size is essential for representation learning models to excel.

8.
Sci Rep ; 13(1): 15234, 2023 09 14.
Article in English | MEDLINE | ID: mdl-37709856

ABSTRACT

Fatty acid binding proteins (FABPs) govern intracellular lipid transport to cytosolic organelles and nuclear receptors. More recently, FABP5 has emerged as a key regulator of synaptic endocannabinoid signaling, suggesting that FABPs may broadly regulate the signaling of neuroactive lipids in the brain. Herein, we demonstrate that brain-expressed FABPs (FABP3, FABP5, and FABP7) interact with epoxyeicosatrienoic acids (EETs) and the peroxisome proliferator-activated receptor gamma agonist 15-deoxy-Δ12,14-Prostaglandin J2 (15d-PGJ2). Among these lipids, EETs displayed highest affinities for FABP3 and FABP5, and 11,12-EET was identified as the preferred FABP ligand. Similarly, 15d-PGJ2 interacted with FABP3 and FABP5 while binding to FABP7 was markedly lower. Molecular modeling revealed unique binding interactions of the ligands within the FABP binding pockets and highlighted major contributions of van der Waals clashes and acyl chain solvent exposure in dictating FABP affinity and specificity. Functional studies demonstrated that endogenous EETs gate the strength of CA1 hippocampal glutamate synapses and that this function was impaired following FABP inhibition. As such, the present study reveals that FABPs control EET-mediated synaptic gating, thereby expanding the functional roles of this protein family in regulating neuronal lipid signaling.


Subject(s)
Brain , Fatty Acid-Binding Proteins , Cell Communication , Fatty Acid-Binding Protein 7 , Eicosanoids , Glutamic Acid
9.
Plant Dis ; 2023 Aug 23.
Article in English | MEDLINE | ID: mdl-37610365

ABSTRACT

Buttercup (Ranunculus asiaticus L.) is a popular and high value ornamental species grown in landscapes and gardens and as cut flowers. It is mostly cultivated in Europe, the Mediterranean, and the Americas (Beruto and Debergh, 2004). In January 2022, leaf blight was observed on approximately 24 of forty 4-month-old R. asiaticus plants grown in a high tunnel at a cut flower farm located in Anderson County, South Carolina, USA. Symptoms included irregular, vein-limited, and necrotic leaf lesions and yellowing. Some lesions had a chlorotic halo. Two diseased plants were submitted to the Clemson University Plant and Pest Diagnostic Clinic. Symptomatic leaves were surface sterilized with 10% bleach for 1 min and rinsed in sterile water. Small leaf portions (1 × 1 cm2) were excised from the margin of lesions. They were macerated in 500 µl of sterile water and incubated at room temperature for 10 min. A loopful of suspension was streaked on nutrient agar (NA). Slightly convex, yellowish-mucoid colonies appeared after incubation at 28°C for 48 h. Two isolates, 23A and 23B, from two plants were obtained by transferring single colonies to new NA plates. Both isolates were identified as X. campestris (probability values > 0.8) using a Biolog Microbial Identification System (GEN III Microplate; Identification Database v.2.8.0.15G). PCR amplification of these two isolates were performed for housekeeping genes gyrB, rpoD, and dnaK (Young et al. 2008). The amplicon sequences (GenBank accession nos.: OR101193 and OR101194 [dnaK]; OR101195 and OR101196 [gyrB]; OR101197 and OR101198 [rpoD]) were identical between the two isolates based on sequence alignment in MEGA11 (Tamura et al. 2021). Nucleotide BLAST of these three genes showed 94.6 to 98.9% identity (dnaK: 912 of 922 bp; gyrB: 827 of 839 bp; rpoD: 803 of 849 bp) with 100% coverage with the Xanthomonas campestris pv. campestris type strain (AE008922). A neighbor joining phylogenetic tree with the concatenated sequences of these three genes showed that 23A and 23B had the closest match with X. campestris pv. campestris. However, these two isolates tested negative in the probe-based qPCR assay specific for X. campestris pv. campestris with only the positive control amplified (Köhl et al. 2011), suggesting that they may belong to a new pathovar of X. campestris. To confirm the pathogenicity of these isolates, three healthy R. asiaticus plants each were spray inoculated with suspensions of 23A and 23B in sterile tap water until runoff (OD600 = 0.1, approx. 108 CFU/ml). The non-inoculated control plants received a sterile tap water spray. The experiment was conducted twice. All plants were maintained in a growth chamber at 24°C with 10-h photoperiod. Seven to 15 days after inoculation, necrotic lesions with chlorotic halo and leaf yellowing, similar to those observed in the field, were observed on inoculated plants, while the non-inoculated control plants remained symptomless. Koch's postulates were fulfilled by reisolating the bacteria from the symptomatic plants and confirming the bacterial identity with the sequence analysis described above. The disease was first reported in California in 1996 (Azad et al. 1996) but to the best of our knowledge has not been reported again in the United States. This is the first report of X. campestris causing bacterial leaf blight in R. asiaticus in South Carolina. Since more than 50% of the flower producers/farmers grow Ranunculus in South Carolina, further work is necessary to determine how widespread the disease is and its economic impact.

10.
J Econ Entomol ; 116(3): 973-982, 2023 06 13.
Article in English | MEDLINE | ID: mdl-37023722

ABSTRACT

Helicoverpa armigera (Hübner) is a major crop pest native to Europe, Asia, Australia, and Africa which has recently invaded South America and has caused billions of dollars in agricultural losses. Because of challenges in differentiating between H. armigera and Helicoverpa zea (Boddie), a closely related species native to North and South America, genetic tests have previously been developed to detect H. armigera DNA in pooled samples of moth legs. In this study, a field-based recombinase polymerase amplification (RPA) assay using a lateral flow strip and a qPCR melt curve assay were developed for specific detection of H. armigera DNA in pooled moth samples. In addition, a crude DNA extraction protocol for whole moths was developed to allow rapid preparation of DNA samples. The RPA field test was able to detect ≥ 10 pg of purified H. armigera DNA and the crude DNA of one H. armigera sample in a background of 999 H. zea equivalents. The qPCR assay was able to detect ≥ 100 fg of purified H. armigera DNA and the crude DNA of one H. armigera sample in a background of up to 99,999 H. zea equivalents. Both RPA and qPCR assays detected H. armigera in the crude DNA extracted in the field from a pool of one H. armigera moth and 999 H. zea moths. These newly developed molecular assays to detect H. armigera will contribute to large-scale surveillance programs of H. armigera.


Subject(s)
Moths , Recombinases , Animals , Moths/genetics , Australia , Europe
11.
Plant Dis ; 107(9): 2613-2619, 2023 Sep.
Article in English | MEDLINE | ID: mdl-36825312

ABSTRACT

Cotton leafroll dwarf virus (CLRDV) is emerging across the major cotton-producing states of the southern United States. Because it was detected in nearly all cotton-producing states within a few years of its initial detection in the United States, the spread of the virus has apparently occurred rapidly. In this study spanning three growing seasons in South Carolina, we collected CLRDV isolates from symptomatic and asymptomatic cotton plants in 10 counties. The genomic region encoding P0, the viral suppressor of RNA silencing, was sequenced and compared among CLRDV isolates. Low variability among CLRDV P0 sequences from South Carolina isolates with similarities to other United States isolates was revealed by amino acid sequence alignment and phylogenetic analysis. Low variability among South Carolina isolates was also confirmed by sequencing a subset of eight near-complete genomes of CLRDV isolates. Although sequence variability was low among South Carolina isolates, this data should be taken in the context of all United States isolates, for which diversity may be higher than initially expected. Sequences gathered in this study add to the body of knowledge on CLRDV diversity in the United States.


Subject(s)
Luteoviridae , United States , South Carolina , Phylogeny , Luteoviridae/genetics , Amino Acid Sequence
12.
Plant Dis ; 2023 Feb 23.
Article in English | MEDLINE | ID: mdl-36825314

ABSTRACT

A large grower of Brassica leafy greens and spinach in South Carolina observed a severe outbreak of leaf spot on 150 hectares of spinach (Spinacia oleracea) in Orangeburg County, SC in 2013. The entire field was lost due to the outbreak. Symptoms appeared on 8-week old plants as tan to white necrotic spots with black centers, water-soaking and no discernable chlorotic borders. Lesions varied from 2 mm to 1 cm in diameter and often coalesced to cover >50% of the leaves. Symptomatic spinach plants cv. Vancouver were collected in 2013 from the field. Bacterial streaming was evident from the border of necrotic lesions under magnification. Lesion border regions were excised, surface-disinfested with 0.5% NaOCl, macerated in sterilized distilled water and streaked onto nutrient agar (NA) and Pseudomonas Agar F (PAF). Bacterial growth was observed on NA and PAF; several single colonies were selected and re-streaked onto PAF. Colonies fluoresced blue under UV light after 48 h at 28oC. Two of the strains were subjected to 16S rRNA sequencing (GenBank accessions OM983506 and OM983507) and Fatty Acid Methyl Ester (FAME) analysis (MIDI LABS, Newark, DE). FAME results had a best similarity index (0.788) to Pseudomonas cichorii/viridiflava. The 16S sequences were queried to Pseudomonas type-strains in GenBank resulting in best matches: P. ovata (99.23% identity with 99% coverage) and P. maditerranea (99.04% identity with 100% coverage). Additionally, sequences had 97.33% identity with 100% coverage as a P. cichorii type strain, and only 96.86% identity with 97% coverage as a P. viridiflava type strain. These two strains were tested for pathogenicity on the spinach cv. Vancouver. Bacteria were grown on PAF for 48 h, and a bacterial suspension was prepared with sterile distilled water with the addition of 0.001% Latron (Plant Health Technologies, Boise, ID) and adjusted to an optical density of 0.4 at OD600. Six-week-old plants (eight plants) were sprayed with the bacterial suspension to runoff, placed at 100% relative humidity for 72 h, and then put in a growth chamber at 25oC with a 12 h diurnal light cycle for 10 days. Eight plants of 'Vancouver' were sprayed with water and 0.001% Latron as controls. Both strains were pathogenic on 'Vancouver' and caused symptoms similar to those observed in the field. Symptoms were not observed on negative controls. The same bacterial colonies were recovered from the lesions on inoculated plants, fulfilling Koch's postulates. Comparative rep-PCR analysis using the BOXA1R primer (Versalovic et al. 1994) showed both strains had identical DNA-banding profiles. All identification methods used indicate that this is a different Pseudomonas species from the one reported on spinach in California by Koike et al (2002). The top producers of spinach in SC stopped large-scale production in 2014 as a result of this pathogen. In 2020, due to inability of processors to obtain sufficient quantities of spinach, SC growers again planted the crop. Growers experienced yield losses due to similar symptoms on the crop. BOX-PCR of isolated strains of bacteria from these plants showed a DNA banding pattern similar to the 2013 strains.

13.
Plant Dis ; 107(1): 116-124, 2023 Jan.
Article in English | MEDLINE | ID: mdl-35640956

ABSTRACT

Xanthomonas fragariae causes strawberry angular leaf spot (ALS), an important disease for the strawberry nursery industry in North America. To identify potential inoculum sources, the survival of X. fragariae was examined on the surfaces of 11 common materials found in nurseries: corrugated cardboard, cotton balls, cotton cloth (t-shirt), strawberry leaf, sheet metal, plastic, rubber, Tyvek, wood (balsa), glass (microscope slide), and latex (latex glove). Prefabricated rectangular samples (7.62 by 2.54 cm) of each material were immersed in a bacterial suspension for 15 min, after which the samples were stored at approximately 20°C (room temperature) or -4°C (the cold storage temperature for dormant plants in strawberry nurseries) for 1, 3, 7, 14, 30, 60, 90, 180, 270, and 365 days after inoculation (DAI). After the storage period elapsed, bacteria were recovered from the surfaces of each of the samples with phosphate-buffered saline (PBS)-soaked cotton balls. Survival rate was determined with a viability real-time quantitative PCR procedure and in a plant bioassay that involved rub inoculation of strawberry leaflets with the PBS-soaked cotton balls used to recover bacteria from the samples. Results showed that X. fragariae could survive on all surfaces but that survival rate differed among materials and storage temperature. All materials were capable of harboring viable bacteria up to 7 DAI when stored at -4°C based on the formation of lesions on inoculated leaves in the plant bioassay. The longest survival observed was 270 DAI on cardboard stored at -4°C. At room temperature, cardboard, cotton balls, cotton t-shirt, and strawberry leaf tissue supported small bacterial populations up to 14 DAI. The information from this study can be used to improve sanitation practices for ALS management in strawberry nurseries.


Subject(s)
Fragaria , Xanthomonas , Fragaria/microbiology , Latex , Real-Time Polymerase Chain Reaction , Xanthomonas/genetics
14.
Cereb Cortex ; 33(6): 2470-2484, 2023 03 10.
Article in English | MEDLINE | ID: mdl-35650684

ABSTRACT

The endocannabinoid (eCB) system represents a promising neurobiological target for novel anxiolytic pharmacotherapies. Previous clinical and preclinical evidence has revealed that genetic and/or pharmacological manipulations altering eCB signaling modulate fear and anxiety behaviors. Water-insoluble eCB lipid anandamide requires chaperone proteins for its intracellular transport to degradation, a process that requires fatty acid-binding proteins (FABPs). Here, we investigated the effects of a novel FABP-5 inhibitor, SBFI-103, on fear and anxiety-related behaviors using rats. Acute intra-prelimbic cortex administration of SBFI-103 induced a dose-dependent anxiolytic response and reduced contextual fear expression. Surprisingly, both effects were reversed when a cannabinoid-2 receptor (CB2R) antagonist, AM630, was co-infused with SBFI-103. Co-infusion of the cannabinoid-1 receptor antagonist Rimonabant with SBFI-103 reversed the contextual fear response yet showed no reversal effect on anxiety. Furthermore, in vivo neuronal recordings revealed that intra-prelimbic region SBFI-103 infusion altered the activity of putative pyramidal neurons in the basolateral amygdala and ventral hippocampus, as well as oscillatory patterns within these regions in a CB2R-dependent fashion. Our findings identify a promising role for FABP5 inhibition as a potential target for anxiolytic pharmacotherapy. Furthermore, we identify a novel, CB2R-dependent FABP-5 signaling pathway in the PFC capable of strongly modulating anxiety-related behaviors and anxiety-related neuronal transmission patterns.


Subject(s)
Anti-Anxiety Agents , Anxiety , Fatty Acid-Binding Proteins , Prefrontal Cortex , Receptor, Cannabinoid, CB2 , Animals , Rats , Amygdala/drug effects , Amygdala/metabolism , Anti-Anxiety Agents/metabolism , Anti-Anxiety Agents/pharmacology , Anti-Anxiety Agents/therapeutic use , Anxiety/drug therapy , Anxiety/metabolism , Cannabinoids/metabolism , Endocannabinoids/metabolism , Fatty Acid-Binding Proteins/antagonists & inhibitors , Fatty Acid-Binding Proteins/metabolism , Fear/drug effects , Fear/physiology , Hippocampus/drug effects , Hippocampus/metabolism , Prefrontal Cortex/drug effects , Prefrontal Cortex/metabolism , Receptor, Cannabinoid, CB1/antagonists & inhibitors , Receptor, Cannabinoid, CB1/metabolism , Receptor, Cannabinoid, CB2/antagonists & inhibitors , Receptor, Cannabinoid, CB2/metabolism
15.
Plant Dis ; 107(7): 2112-2118, 2023 Jul.
Article in English | MEDLINE | ID: mdl-36510433

ABSTRACT

Cytospora plurivora D.P. Lawr., L.A. Holland & Trouillas has been associated with recent premature peach tree decline in South Carolina, but very little is known about the pathogen or chemical control options. Ninety-three C. plurivora isolates were collected in 2016 and 2017 from 1-year-old peach wood and symptomatic scaffold limbs, respectively, from orchards in six towns in South Carolina. Six unique genotypes were identified based on substantial ITS1-5.8S-ITS2 sequence variability and classified G1 to G6. Three of the genotypes (G2, G3, and G6) were isolated in high frequency in multiple locations of both years. In addition to the genotypic variation, multiple phenotypes were observed between and within genotype groups. Species identity was determined using additional gene loci: ACT, TUB, and EF, and isolates were found to belong to C. plurivora for all genotype groups. All tested genotypes were sensitive to thiophanate-methyl (FRAC 1) but exhibited slightly lower sensitivity to propiconazole and difenoconazole (both FRAC 3). Boscalid, fluopyram (both FRAC 7s), azoxystrobin, and pyraclostrobin (both FRAC 11s) were ineffective in vitro at inhibiting mycelial growth of C. plurivora genotypes. Field inoculation of peach and nectarine trees revealed that all genotypes developed twig cankers with differences in virulence. G1 was most virulent, and G6 was least virulent. This study provides a link between the C. plurivora genetic variability and virulence and provides fungicide sensitivity information that could be used to improve disease management practices.


Subject(s)
Ascomycota , Fungicides, Industrial , Fungicides, Industrial/pharmacology , Plant Diseases , Ascomycota/genetics , Genetic Variation
16.
Cancers (Basel) ; 16(1)2023 Dec 21.
Article in English | MEDLINE | ID: mdl-38201488

ABSTRACT

Resistance to standard of care taxane and androgen deprivation therapy (ADT) causes the vast majority of prostate cancer (PC) deaths worldwide. We have developed RapidCaP, an autochthonous genetically engineered mouse model of PC. It is driven by the loss of PTEN and p53, the most common driver events in PC patients with life-threatening diseases. As in human ADT, surgical castration of RapidCaP animals invariably results in disease relapse and death from the metastatic disease burden. Fatty Acid Binding Proteins (FABPs) are a large family of signaling lipid carriers. They have been suggested as drivers of multiple cancer types. Here we combine analysis of primary cancer cells from RapidCaP (RCaP cells) with large-scale patient datasets to show that among the 10 FABP paralogs, FABP5 is the PC-relevant target. Next, we show that RCaP cells are uniquely insensitive to both ADT and taxane treatment compared to a panel of human PC cell lines. Yet, they share an exquisite sensitivity to the small-molecule FABP5 inhibitor SBFI-103. We show that SBFI-103 is well tolerated and can strongly eliminate RCaP tumor cells in vivo. This provides a pre-clinical platform to fight incurable PC and suggests an important role for FABP5 in PTEN-deficient PC.

17.
Front Plant Sci ; 13: 1085395, 2022.
Article in English | MEDLINE | ID: mdl-36561446

ABSTRACT

Tomato leaf mold caused by Cladosporium fulvum (C. fulvum) is a serious fungal disease which results in huge yield losses in tomato cultivation worldwide. In our study, we discovered that ROS (reactive oxygen species) burst was triggered by C. fulvum treatment in tomato leaves. RNA-sequencing was used to identify differentially expressed genes (DEGs) induced by C. fulvum inoculation at the early stage of invasion in susceptible tomato plants. Gene ontology (GO) terms and Kyoto Encyclopedia of Genes and Genomes (KEGG) databases were used to annotate functions of DEGs in tomato plants. Based on our comparative analysis, DEGs related to plant-pathogen interaction pathway, plant hormone signal transduction pathway and the plant phenylpropanoid pathway were further analyzed. Our results discovered that a number of core defense genes against fungal invasion were induced and plant hormone signal transduction pathways were impacted by C. fulvum inoculation. Further, our results showed that SA (salicylic acid) and ABA (abscisic acid) contents were accumulated while JA (jasmonic acid) content decreased after C. fulvum inoculation in comparison with control, and quantitative real-time PCR to detect the relative expression of genes involved in SA, ABA and JA signaling pathway further confirmed our results. Together, results will contribute to understanding the mechanisms of C. fulvum and tomato interaction in future.

18.
Bioorg Chem ; 129: 106184, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36244323

ABSTRACT

Fatty acid binding protein 5 (FABP5) is a highly promising target for the development of analgesics as its inhibition is devoid of CB1R-dependent side-effects. The design and discovery of highly potent and FABP5-selective truxillic acid (TA) monoesters (TAMEs) is the primary aim of the present study. On the basis of molecular docking analysis, ca. 2,000 TAMEs were designed and screened in silico, to funnel down to 55 new TAMEs, which were synthesized and assayed for their affinity (Ki) to FABP5, 3 and 7. The SAR study revealed that the introduction of H-bond acceptors to the far end of the 1,1'-biphenyl-3-yl and 1,1'-biphenyl-2-yl ester moieties improved the affinity of α-TAMEs to FABP5. Compound γ-3 is the first γ-TAME, demonstrating a high affinity to FABP5 and competing with α-TAMEs. We identified the best 20 TAMEs based on the FABP5/3 selectivity index. The clear front runner is α-16, bearing a 2­indanyl ester moiety. In sharp contrast, no ε-TAMEs made the top 20 in this list. However, α-19 and ε-202, have been identified as potent FABP3-selective inhibitors for applications related to their possible use in the protection of cardiac myocytes and the reduction of α-synuclein accumulation in Parkinson's disease. Among the best 20 TAMEs selected based on the affinity to FABP7, 13 out of 20 TAMEs were found to be FABP7-selective, with α-21 as the most selective. This study identified several TAMEs as FABP7-selective inhibitors, which would have potentially beneficial therapeutic effects in diseases such as Down's syndrome, schizophrenia, breast cancer, and astrocytoma. We successfully introduced the α-TA monosilyl ester (TAMSE)-mediated protocol to dramatically improve the overall yields of α-TAMEs. α-TAMSEs with TBDPS as the silyl group is isolated in good yields and unreacted α-TA/ α-MeO-TA, as well as disilyl esters (α-TADSEs) are fully recycled. Molecular docking analysis provided rational explanations for the observed binding affinity and selectivity of the FABP3, 5 and 7 inhibitors, including their α, γ and ε isomers, in this study.


Subject(s)
Analgesics , Cyclobutanes , Fatty Acid-Binding Proteins , Analgesics/chemistry , Analgesics/pharmacology , Esters/pharmacology , Fatty Acid-Binding Proteins/antagonists & inhibitors , Molecular Docking Simulation , Cyclobutanes/chemistry , Cyclobutanes/pharmacology , Structure-Activity Relationship
19.
Front Microbiol ; 13: 970139, 2022.
Article in English | MEDLINE | ID: mdl-36187991

ABSTRACT

Tomato yellow leaf curl virus (TYLCV), a member of the genus Begomovirus of the Geminiviridae family, causes leaf curl disease of tomato that significantly affects tomato production worldwide. SA (salicylic acid), JA (jasmonic acid) or the JA mimetic, COR (coronatine) applied exogenously resulted in improved tomato resistance against TYLCV infection. When compared to mock treated tomato leaves, pretreatment with the three compounds followed by TYCLV stem infiltration also caused a greater accumulation of H2O2. We employed RNA-Seq (RNA sequencing) to identify DEGs (differentially expressed genes) induced by SA, JA, COR pre-treatments after Agro-inoculation of TYLCV in tomato. To obtain functional information on these DEGs, we annotated genes using gene ontology (GO) and Kyoto encyclopedia of genes and genomes (KEGG) databases. Based on our comparative analysis, differentially expressed genes related to cell wall metabolism, hormone signaling and secondary metabolism pathways were analyzed in compound treated samples. We also found that TYLCV levels were affected in SlNPR1 and SlCOI1 silenced plants. Interestingly, compared to the mock treated samples, SA signaling was hyper-activated in SlCOI1 silenced plants which resulted in a significant reduction in viral titer, whereas in SINPR1 silencing tomato plants, there was a 19-fold increase in viral load. Our results indicated that SA, JA, and COR had multiple impacts on defense modulation at the early stage of TYLCV infection. These results will help us better understand SA and JA induced defenses against viral invasion and provide a theoretical basis for breeding viral resistance into commercial tomato accessions.

20.
Materials (Basel) ; 15(17)2022 Aug 29.
Article in English | MEDLINE | ID: mdl-36079353

ABSTRACT

With the increase in transmission pressure and pipe diameter of long-distance oil and gas pipelines, automatic welding of the pipeline has become the mainstream welding method. The multi-layer and multi-pass welding path planning of large-diameter pipelines with typical narrow gap grooves are studied, and a welding strategy for pipeline external welding robot is proposed. By analyzing the shape of the weld bead section of the narrow gap groove and comparing the advantages and disadvantages of the equal-height method and the equal-area method, the mathematical model of the filling layer is established. Through the test and analysis in the workshop, the predicted lifting value meets the actual welding requirements. The microstructure of the weld was analyzed by SEM. The main structure of the weld was fine acicular ferrite, which could improve the mechanical properties of the welded joint. After multi-layer filling, the filling layer is flush with the edge of the groove. The establishment of this model lays a foundation for the formulation of welding process parameters for large-diameter pipes and the off-line programming of welding procedures.

SELECTION OF CITATIONS
SEARCH DETAIL
...