Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Rev Sci Instrum ; 91(7): 073202, 2020 Jul 01.
Article in English | MEDLINE | ID: mdl-32752813

ABSTRACT

We report a new crossed molecular beam apparatus with the H atom Rydberg tagging detection technique. The multi-channel detection scheme with 15 microchannel plate (MCP) detectors enables simultaneously accumulating time-of-flight spectra over a wide range of scattering angles (112°). The efficiency of data acquisition has been enhanced by an order of magnitude. The angular distribution of H atoms from photodissociation of CH4 at 121.6 nm was used for calibrating the detection efficiency of different MCP detectors. The differential cross section of the reaction F + H2 → HF + H at the collision of 6.9 meV was measured, demonstrating the feasibility and accuracy of this multi-channel detection method. This apparatus could be a powerful tool for investigating the dynamics of reactions at very low collision energy.

2.
Nat Commun ; 10(1): 1250, 2019 03 19.
Article in English | MEDLINE | ID: mdl-30890696

ABSTRACT

Hydroxyl radicals (OH) play a central role in the interstellar medium. Here, we observe highly rotationally excited OH radicals with energies above the bond dissociation energy, termed OH "super rotors", from the vacuum ultraviolet photodissociation of water. The most highly excited OH(X) super rotors identified at 115.2 nm photolysis have an internal energy of 4.86 eV. A striking enhancement in the yield of vibrationally-excited OH super rotors is detected when exciting the bending vibration of the water molecule. Theoretical analysis shows that bending excitation enhances the probability of non-adiabatic coupling between the [Formula: see text] and [Formula: see text] states of water at collinear O-H-H geometries following fast internal conversion from the initially excited [Formula: see text] state. The present study illustrates a route to produce extremely rotationally excited OH(X) radicals from vacuum ultraviolet water photolysis, which may be related to the production of the highly rotationally excited OH(X) radicals observed in the interstellar medium.

3.
Rev Sci Instrum ; 89(6): 063113, 2018 Jun.
Article in English | MEDLINE | ID: mdl-29960519

ABSTRACT

In this article, we describe an experimental setup for studying tunable vacuum ultraviolet photochemistry using the H-atom Rydberg tagging time-of-flight technique. In this apparatus, two vacuum ultraviolet laser beams were used: one is generated by using a nonlinear four-wave mixing scheme in a Kr gas cell and fixed at 121.6 nm wavelength to probe the H-atom product through the Lyman α transition and the other beam, produced by a seeded free electron laser facility, can be continuously tunable for photodissociating molecules in the wavelength range of 50-150 nm with extremely high brightness. Preliminary results on the H2O photodissociation in the 4d (000) Rydberg state are reported here. These results suggest that the experimental setup is a powerful tool for investigating photodissociation dynamics in the vacuum ultraviolet region for molecules involving H-atom elimination processes.

4.
J Chem Phys ; 148(12): 124301, 2018 Mar 28.
Article in English | MEDLINE | ID: mdl-29604834

ABSTRACT

Photodissociation dynamics of H2O via the F̃ state at 111.5 nm were investigated using the high resolution H-atom Rydberg "tagging" time-of-flight (TOF) technique, in combination with the tunable vacuum ultraviolet free electron laser at the Dalian Coherent Light Source. The product translational energy distributions and angular distributions in both parallel and perpendicular directions were derived from the recorded TOF spectra. Based on these distributions, the quantum state distributions and angular anisotropy parameters of OH (X) and OH (A) products have been determined. For the OH (A) + H channel, highly rotationally excited OH (A) products have been observed. These products are ascribed to a fast direct dissociation on the B̃1A1 state surface after multi-step internal conversions from the initial excited F̃ state to the B̃ state. While for the OH (X) + H channel, very highly rotationally excited OH (X) products with moderate vibrational excitation are revealed and attributed to the dissociation via a nonadiabatic pathway through the well-known two conical intersections between the B̃-state and the X̃-state surfaces.

SELECTION OF CITATIONS
SEARCH DETAIL
...