Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
Add more filters










Publication year range
1.
Cytokine ; 179: 156598, 2024 07.
Article in English | MEDLINE | ID: mdl-38583255

ABSTRACT

BACKGROUND: Allograft rejection remains a major obstacle to long-term graft survival. Although previous studies have demonstrated that IL-37 exhibited significant immunomodulatory effects in various diseases, research on its role in solid organ transplantation has not been fully elucidated. In this study, the therapeutic effect of recombinant human IL-37 (rhIL-37) was evaluated in a mouse cardiac allotransplantation model. METHODS: The C57BL/6 recipients mouse receiving BALB/c donor hearts were treated with rhIL-37. Graft pathological and immunohistology changes, immune cell populations, and cytokine profiles were analyzed on postoperative day (POD) 7. The proliferative capacities of Th1, Th17, and Treg subpopulations were assessed in vitro. Furthermore, the role of the p-mTOR pathway in rhIL-37-induced CD4+ cell inhibition was also elucidated. RESULTS: Compared to untreated groups, treatment of rhIL-37 achieved long-term cardiac allograft survival and effectively alleviated allograft rejection indicated by markedly reduced infiltration of CD4+ and CD11c+ cells and ameliorated graft pathological changes. rhIL-37 displayed significantly less splenic populations of Th1 and Th17 cells, as well as matured dendritic cells. The percentages of Tregs in splenocytes were significantly increased in the therapy group. Furthermore, rhIL-37 markedly decreased the levels of TNF-α and IFN-γ, but increased the level of IL-10 in the recipients. In addition, rhIL-37 inhibited the expression of p-mTOR in CD4+ cells of splenocytes. In vitro, similar to the in vivo experiments, rhIL-37 caused a decrease in the proportion of Th1 and Th17, as well as an increase in the proportion of Treg and a reduction in p-mTOR expression in CD4+ cells. CONCLUSIONS: We demonstrated that rhIL-37 effectively suppress acute rejection and induce long-term allograft acceptance. The results highlight that IL-37 could be novel and promising candidate for prevention of allograft rejection.


Subject(s)
Allografts , Graft Rejection , Heart Transplantation , Interleukin-1 , Mice, Inbred BALB C , Mice, Inbred C57BL , Recombinant Proteins , Animals , Graft Rejection/immunology , Graft Rejection/prevention & control , Humans , Mice , Recombinant Proteins/pharmacology , Interleukin-1/metabolism , Graft Survival/drug effects , Graft Survival/immunology , Th1 Cells/immunology , Th1 Cells/drug effects , Th17 Cells/immunology , Th17 Cells/drug effects , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Male , TOR Serine-Threonine Kinases/metabolism , CD4-Positive T-Lymphocytes/immunology , CD4-Positive T-Lymphocytes/drug effects , Signal Transduction/drug effects
2.
Anal Bioanal Chem ; 416(7): 1571-1587, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38279012

ABSTRACT

Dragon's Blood (DB) serves as a precious Chinese medicine facilitating blood circulation and stasis dispersion. Daemonorops draco (D. draco; Qi-Lin-Jie) and Dracaena cochinchinensis (D. cochinchinenesis; Long-Xue-Jie) are two reputable plant sources for preparing DB. This work was designed to comprehensively characterize and compare the metabolome differences between D. draco and D. cochinchinenesis, by integrating liquid chromatography/mass spectrometry and untargeted metabolomics analysis. Offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), by utilizing a powerful hybrid scan approach, was elaborated for multicomponent characterization. Configuration of an XBridge Amide column and an HSS T3 column in offline mode exhibited high orthogonality (A0 0.80) in separating the complex components in DB. Particularly, the hybrid high-definition MSE-high definition data-dependent acquisition (HDMSE-HDDDA) in both positive and negative ion modes was applied for data acquisition. Streamlined intelligent data processing facilitated by the UNIFI™ (Waters) bioinformatics platform and searching against an in-house chemical library (recording 223 known compounds) enabled efficient structural elucidation. We could characterize 285 components, including 143 from D. draco and 174 from D. cochinchinensis. Holistic comparison of the metabolomes among 21 batches of DB samples by the untargeted metabolomics workflows unveiled 43 significantly differential components. Separately, four and three components were considered as the marker compounds for identifying D. draco and D. cochinchinenesis, respectively. Conclusively, the chemical composition and metabolomic differences of two DB resources were investigated by a dimension-enhanced analytical approach, with the results being beneficial to quality control and the differentiated clinical application of DB.


Subject(s)
Chemometrics , Metabolome , Plant Extracts , Mass Spectrometry , Chromatography, Liquid , Chromatography, High Pressure Liquid/methods
3.
Cytotherapy ; 26(3): 299-310, 2024 03.
Article in English | MEDLINE | ID: mdl-38159090

ABSTRACT

BACKGROUND AIMS: Chronic allograft vasculopathy (CAV) remains a predominant contributor to late allograft failure after organ transplantation. Several factors have already been shown to facilitate the progression of CAV, and there is still an urgent need for effective and specific therapeutic approaches to inhibit CAV. Human mesenchymal-like endometrial regenerative cells (ERCs) are free from the deficiencies of traditional invasive acquisition methods and possess many advantages. Nevertheless, the exact immunomodulation mechanism of ERCs remains to be elucidated. METHODS: C57BL/6 (B6) mouse recipients receiving BALB/c mouse donor abdominal aorta transplantation were treated with ERCs, negative control (NC)-ERCs and interleukin (IL)-37-/-ERCs (ERCs with IL-37 ablation), respectively. Pathologic lesions and inflammatory cell infiltration in the grafts, splenic immune cell populations, circulating donor-specific antibody levels and cytokine profiles were analyzed on postoperative day (POD) 40. The proliferative capacities of Th1, Th17 and Treg subpopulations were assessed in vitro. RESULTS: Allografts from untreated recipients developed typical pathology features of CAV, namely endothelial thickening, on POD 40. Compared with untreated and IL-37-/-ERC-treated groups, IL-37-secreting ERCs (ERCs and NC-ERCs) significantly reduced vascular stenosis, the intimal hyperplasia and collagen deposition. IL-37-secreting ERCs significantly inhibited the proliferation of CD4+T cells, reduced the proportions of Th1 and Th17 cells, but increased the proportion of Tregs in vitro. Furthermore, in vitro results also showed that IL-37-secreting ERCs significantly inhibited Th1 and Th17 cell responses, abolished B-cell activation, diminished donor-specific antibody production and increased Treg proportions. Notably, IL-37-secreting ERCs remarkably downregulated the levels of pro-inflammatory cytokines (interferon-γ, tumor necrosis factor-α, IL-1ß, IL-6 and IL-17A) and increased IL-10 levels in transplant recipients. CONCLUSIONS: The knockdown of IL-37 dramatically abrogates the therapeutic ability of ERCs for CAV. Thus, this study highlights that IL-37 is indispensable for ERC-mediated immunomodulation for CAV and improves the long-term allograft acceptance.


Subject(s)
Heart Transplantation , Animals , Humans , Mice , Allografts , Immunotherapy , Interleukins , Mice, Inbred BALB C , Mice, Inbred C57BL
4.
J Chromatogr A ; 1706: 464243, 2023 Sep 13.
Article in English | MEDLINE | ID: mdl-37567002

ABSTRACT

To accurately identify the metabolites is crucial in a number of research fields, and discovery of new compounds from the natural products can benefit the development of new drugs. However, the preferable phytochemistry or liquid chromatography/mass spectrometry approach is time-/labor-extensive or receives unconvincing identifications. Herein, we presented a strategy, by integrating offline two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), exclusion list-containing high-definition data-dependent acquisition (HDDDA-EL), and quantitative structure-retention relationship (QSRR) prediction of the retention time (tR), to facilitate the in-depth and more reliable identification of herbal components and thus to discover new compounds more efficiently. Using the saponins in Panax quinquefolius flower (PQF) as a case, high orthogonality (0.79) in separating ginsenosides was enabled by configuring the XBridge Amide and CSH C18 columns. HDDDA-EL could improve the coverage in MS2 acquisition by 2.26 folds compared with HDDDA (2933 VS 1298). Utilizing 106 reference compounds, an accurate QSRR prediction model (R2 = 0.9985 for the training set and R2 = 0.88 for the validation set) was developed based on Gradient Boosting Machine (GBM), by which the predicted tR matching could significantly reduce the isomeric candidates identification for unknown ginsenosides. Isolation and establishment of the structures of two malonylginsenosides by NMR partially verified the practicability of the integral strategy. By these efforts, 421 ginsenosides were identified or tentatively characterized, and 284 thereof were not ever reported from the Panax species. The current strategy is thus powerful in the comprehensive metabolites characterization and rapid discovery of new compounds from the natural products.


Subject(s)
Biological Products , Ginsenosides , Panax , Ginsenosides/analysis , Panax/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Chromatography, Liquid , Flowers/chemistry , Biological Products/analysis
5.
J Agric Food Chem ; 71(24): 9391-9403, 2023 Jun 21.
Article in English | MEDLINE | ID: mdl-37294034

ABSTRACT

Ginseng extracts are extensively used as raw materials for food supplements and herbal medicines. This study aimed to characterize ginsenosides obtained from six Panax plant extracts (Panax ginseng, red ginseng, Panax quinquefolius, Panax notoginseng, Panax japonicus, and Panax japonicus var. major) and compared them with their in vitro metabolic profiles mediated by rat intestinal microbiota. Ultrahigh-performance liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (UHPLC/IM-QTOF-MS) with scheduled multiple reaction monitoring (sMRM) quantitation methods were developed to characterize and compare the ginsenoside composition of the different extracts. After in vitro incubation, 248 ginsenosides/metabolites were identified by UHPLC/IM-QTOF-MS in six biotransformed samples. Deglycosylation was determined to be the main metabolic pathway of ginsenosides, and protopanaxadiol-type and oleanolic acid-type saponins were easier to be easily metabolized. Compared with the ginsenosides in plant extracts, those remaining in six biotransformed samples were considerably fewer after biotransformation for 8 h. However, the compositional differences in four subtypes of the ginsenosides among the six Panax plants became more distinct.


Subject(s)
Gastrointestinal Microbiome , Ginsenosides , Panax notoginseng , Rats , Animals , Ginsenosides/chemistry , Chromatography, High Pressure Liquid/methods , Mass Spectrometry/methods , Chromatography, Liquid , Panax notoginseng/chemistry , Plant Extracts/chemistry
6.
Front Immunol ; 14: 1155090, 2023.
Article in English | MEDLINE | ID: mdl-37180168

ABSTRACT

Background: The disruption of intestinal barrier functions and the dysregulation of mucosal immune responses, mediated by aberrant purinergic metabolism, are involved in the pathogenesis of inflammatory bowel diseases (IBD). A novel mesenchymal-like endometrial regenerative cells (ERCs) has demonstrated a significant therapeutic effect on colitis. As a phenotypic marker of ERCs, CD73 has been largely neglected for its immunosuppressive function in regulating purinergic metabolism. Here, we have investigated whether CD73 expression on ERCs is a potential molecular exerting its therapeutic effect against colitis. Methods: ERCs either unmodified or with CD73 knockout (CD73-/-ERCs), were intraperitoneally administered to dextran sulfate sodium (DSS)-induced colitis mice. Histopathological analysis, colon barrier function, the proportion of T cells, and maturation of dendritic cells (DCs) were investigated. The immunomodulatory effect of CD73-expressing ERCs was evaluated by co-culture with bone marrow-derived DCs under LPS stimulation. FACS determined DCs maturation. The function of DCs was detected by ELISA and CD4+ cell proliferation assays. Furthermore, the role of the STAT3 pathway in CD73-expressing ERCs-induced DC inhibition was also elucidated. Results: Compared with untreated and CD73-/-ERCs-treated groups, CD73-expressing ERCs effectively attenuated body weight loss, bloody stool, shortening of colon length, and pathological damage characterized by epithelial hyperplasia, goblet cell depletion, the focal loss of crypts and ulceration, and the infiltration of inflammatory cells. Knockout of CD73 impaired ERCs-mediated colon protection. Surprisingly, CD73-expressing ERCs significantly decreased the populations of Th1 and Th17 cells but increased the proportions of Tregs in mouse mesenteric lymph nodes. Furthermore, CD73-expressing ERCs markedly reduced the levels of pro-inflammatory cytokines (IL-6, IL-1ß, TNF-α) and increased anti-inflammatory factors (IL-10) levels in the colon. CD73-expressing ERCs inhibited the antigen presentation and stimulatory function of DCs associated with the STAT-3 pathway, which exerted a potent therapeutic effect against colitis. Conclusions: The knockout of CD73 dramatically abrogates the therapeutic ability of ERCs for intestinal barrier dysfunctions and the dysregulation of mucosal immune responses. This study highlights the significance of CD73 mediates purinergic metabolism contributing to the therapeutic effects of human ERCs against colitis in mice.


Subject(s)
Colitis , Inflammatory Bowel Diseases , Humans , Animals , Mice , Mice, Knockout , Colitis/chemically induced , Colitis/therapy , Intestines/pathology
7.
Front Immunol ; 13: 931783, 2022.
Article in English | MEDLINE | ID: mdl-35935954

ABSTRACT

Background: IL-37 is a recently identified cytokine with potent immunosuppressive functions. The research fronts of IL-37 are worth investigating, and there is no bibliometric analysis in this field. The purpose of this study is to construct the intellectual base and predict research hotspots of IL-37 research both quantitatively and qualitatively according to bibliometric analysis. Methods: The articles were downloaded from the Web of Science Core Collection (WoSCC) database from the inception of the database to 1 April 2022. CiteSpace 5.8.R3 (64-bit, Drexel University, Philadelphia, PA, USA) and Online Analysis Platform of Literature Metrology (https://bibliometric.com/) were used to perform bibliometric and knowledge-map analyses. Results: A total of 534 papers were included in 200 academic journals by 2,783 authors in 279 institutions from 50 countries/regions. The journal Cytokine published the most papers on IL-37, while Nature Immunology was the most co-cited journal. The publications belonged mainly to two categories of Immunology and Cell Biology. USA and China were the most productive countries. Meanwhile, the University of Colorado Denver in USA produced the highest number of publications followed by Radboud University Nijmegen in the Netherlands and Monash University in Australia. Charles A. Dinarello published the most papers, while Marcel F. Nold had the most co-citations. Top 10 co-citations on reviews, mechanisms, and diseases were regarded as the knowledge base. The keyword co-occurrence and co-citations of references revealed that the mechanisms and immune-related disorders were the main aspects of IL-37 research. Notably, the involvement of IL-37 in various disorders and the additional immunomodulatory mechanisms were two emerging hotspots in IL-37 research. Conclusions: The research on IL-37 was thoroughly reviewed using bibliometrics and knowledge-map analyses. The present study is a benefit for academics to master the dynamic evolution of IL-37 and point out the direction for future research.


Subject(s)
Bibliometrics , Internet , Cytokines , Forecasting , Humans , Netherlands
8.
Biomed Res Int ; 2022: 2680110, 2022.
Article in English | MEDLINE | ID: mdl-35782053

ABSTRACT

Background: Immunotherapy has been considered as a promising cancer treatment for hepatocellular carcinoma (HCC). However, due to the particular immune environment of the liver, identifying patients who could benefit from immunotherapy is critical in clinical practice. Methods: The pyroptosis gene expression database of 54 candidates from The Cancer Genome Atlas (TCGA) were collected to discover the critical prognostic-related pyroptosis genes. A novel pyroptosis gene model was established to calculate the risk score. Kaplan-Meier analysis and receiver operating characteristic curve (ROC) were used to verify its predictive ability. The International Cancer Genome Consortium (ICGC) data was collected as external validation data to verify the model's accuracy. We employed multiple bioinformatics tools and algorithms to evaluate the tumor immune microenvironment (TIME) and the response to immunotherapy. Results: Our study found that most pyroptosis genes were expressed differently in normal and tumor tissues and that their expression was associated with the prognosis. Then, a precise four-pyroptosis gene model was generated. The one-year area under the curves (AUCs) among the training, internal, and external validation patients were 0.901, 0.727, and 0.671, respectively. An analysis of survival data revealed that individuals had a worse prognosis than patients with low risk. The analysis of TIME revealed that the low-risk group had more antitumor cells, fewer immunosuppressive cells, stronger immune function, less immune checkpoint gene expression, and better immunotherapy response than the high-risk group. Immunophenoscore (IPS) analysis also demonstrated that the low-risk score was related to superior immune checkpoint inhibitors therapy. Conclusion: A nomogram based on the four-pyroptosis gene signature was a novel tool to predict the effectiveness of immunotherapy for HCC. Therefore, individualized treatment targeting the pyroptosis genes may influence TIME and play an essential role in improving the prognosis in HCC patients.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/therapy , Humans , Immunologic Factors , Immunotherapy , Liver Neoplasms/genetics , Liver Neoplasms/therapy , Nomograms , Pyroptosis/genetics , Tumor Microenvironment/genetics
9.
Front Immunol ; 13: 859972, 2022.
Article in English | MEDLINE | ID: mdl-35663940

ABSTRACT

Background: Mesenchymal stem cells (MSCs) have important research value and broad application prospects in liver diseases. This study aims to comprehensively review the cooperation and influence of countries, institutions, authors, and journals in the field of MSCs in liver diseases from the perspective of bibliometrics, evaluate the clustering evolution of knowledge structure, and discover hot trends and emerging topics. Methods: The articles and reviews related to MSCs in liver diseases were retrieved from the Web of Science Core Collection using Topic Search. A bibliometric study was performed using CiteSpace and VOSviewer. Results: A total of 3404 articles and reviews were included over the period 2001-2021. The number of articles regarding MSCs in liver diseases showed an increasing trend. These publications mainly come from 3251 institutions in 113 countries led by China and the USA. Li L published the most papers among the publications, while Pittenger MF had the most co-citations. Analysis of the most productive journals shows that most are specialized in medical research, experimental medicine and cell biology, and cell & tissue engineering. The macroscopical sketch and micro-representation of the whole knowledge field are realized through co-citation analysis. Liver scaffold, MSC therapy, extracellular vesicle, and others are current and developing areas of the study. The keywords "machine perfusion", "liver transplantation", and "microRNAs" also may be the focus of new trends and future research. Conclusions: In this study, bibliometrics and visual methods were used to review the research of MSCs in liver diseases comprehensively. This paper will help scholars better understand the dynamic evolution of the application of MSCs in liver diseases and point out the direction for future research.


Subject(s)
Biomedical Research , Liver Diseases , Mesenchymal Stem Cells , Bibliometrics , Humans , Liver Diseases/therapy , Publications
10.
J Chromatogr A ; 1675: 463162, 2022 Jul 19.
Article in English | MEDLINE | ID: mdl-35635871

ABSTRACT

Challenges encountered in plant metabolites characterization by liquid chromatography/mass spectrometry can arise from the insufficient chromatography separation, the lack of specific database, and low reliability of identification because of the ubiquitous isomerism. Herein, we present an integral approach, by combining comprehensive off-line two-dimensional liquid chromatography/ion mobility-quadrupole time-of-flight mass spectrometry (2D-LC/IM-QTOF-MS), automatic peak annotation, molecular networking, and collision cross section (CCS) prediction, aimed to improve the resolution and reliability in MS-oriented metabolites characterization. Using the seeds of Cuscuta chinensis as a case, the configuration of an XBridge Amide column of hydrophilic interaction chromatography (HILIC) and a Zorbax SB-Aq column of reversed-phase chromatography (RPC), in an off-line mode, showed the orthogonality of 0.73 and effective peak capacity of 4361. Data-independent high-definition MSE (HDMSE) in the negative mode could enable high-coverage MS2 data acquisition and enhance the ions resolution, while computational peak annotation workflows facilitated by UNIFITM and Global Natural Products Social Molecular Network (GNPS) could efficiently characterize the targeted and untargeted compound analogs. A total of 302 compounds were identified or tentatively characterized, and 109 thereof were unreported. Moreover, CCS prediction (www.allccs.zhulab.cn) provided more possibilities to distinguish 12 pairs of isomers in the lack of reference standards. The 2D-LC/IM-QTOF-MS approach enabled the collection of five dimension of data related to each component (tR by HILIC and RPC, CCS, m/z in MS1 and MS2), and the intelligent metabolites characterization with more reliable MS data. Conclusively, the established integral strategy can be utilized in metabolome analysis to support the quality control of herbal medicines.


Subject(s)
Cuscuta , Chromatography, High Pressure Liquid/methods , Chromatography, Liquid , Mass Spectrometry/methods , Reproducibility of Results
11.
Int J Gen Med ; 15: 3525-3540, 2022.
Article in English | MEDLINE | ID: mdl-35386863

ABSTRACT

Background: The prognostic value of m6A-related genes in hepatocellular carcinoma (HCC) and its correlation with the immune microenvironment still requires further investigation. Methods: Consensus clustering by m6A related genes was used to classify 374 patients with HCC from The Cancer Genome Atlas (TCGA) database. Then we performed the least absolute shrinkage and selection operator (LASSO) to construct the m6A related genes model. The International Cancer Genome Consortium (ICGC) and Gene Expression Omnibus (GEO) datasets were used to verify and evaluate the model. ESTIMATE, CIBERSORTx, the expression levels of immune checkpoint genes, and TIDE were used to investigate the tumor microenvironment (TME) and the response to immunotherapy. Gene set enrichment analyses (GSEA), tumor-associated macrophages (TAMs), and gene-drug sensitivity were also analyzed. Results: By expression value and regression coefficient of five m6A related genes, we constructed the risk score of each patient. The patients with a higher risk score had a considerably poorer prognosis in the primary and validated cohort. For further discussing TME and the response to immunotherapy, we divided the entire set into two groups based on the risk score. Our findings implied that the tumor-infiltrating lymphocytes (TILs) were proportional to the risk scores, which seemed to contradict that patients with higher scores had a poor prognosis. Further, we found that the high-risk group had higher expression of PD-L1, CTLA-4, and PDCD1, indicating immune dysfunction, which may be a fundamental reason for poor prognosis. This was further reinforced by the fact that the low-risk group responded better than the high-risk group to monotherapy and combination therapy. Conclusion: The m6A related risk score is a new independent prognostic factor that correlates with immunotherapy response. It can provide a new therapeutic strategy for improving individual immunotherapy in HCC.

12.
Nat Prod Rep ; 39(4): 875-909, 2022 04 20.
Article in English | MEDLINE | ID: mdl-35128553

ABSTRACT

Covering: 2011 to the end of 2020Panax species (Araliaceae), particularly P. ginseng, P. quinquefolius, and P. notoginseng, have a long history of medicinal use because of their remarkable tonifying effects, and currently serve as crucial sources for various healthcare products, functional foods, and cosmetics, aside from their vast clinical preparations. The huge market demand on a global scale prompts the continuous prosperity in ginseng research concerning the discovery of new compounds, precise quality control, ADME (absorption/disposition/metabolism/excretion), and biosynthesis pathways. Benefitting from the ongoing rapid development of analytical technologies, e.g. multi-dimensional chromatography (MDC), personalized mass spectrometry (MS) scan strategies, and multi-omics, highly recognized progress has been made in driving ginseng analysis towards "systematicness, integrity, personalization, and intelligentization". Herein, we review the advances in the phytochemistry, quality control, metabolism, and biosynthesis pathway of ginseng over the past decade (2011-2020), with 410 citations. Emphasis is placed on the introduction of new compounds isolated (saponins and polysaccharides), and the emerging novel analytical technologies and analytical strategies that favor ginseng's authentic use and global consumption. Perspectives on the challenges and future trends in ginseng analysis are also presented.


Subject(s)
Ginsenosides , Panax , Saponins , Ginsenosides/analysis , Ginsenosides/chemistry , Ginsenosides/metabolism , Mass Spectrometry , Panax/chemistry , Panax/metabolism , Quality Control , Saponins/chemistry
13.
J Chromatogr A ; 1667: 462904, 2022 Mar 29.
Article in English | MEDLINE | ID: mdl-35193067

ABSTRACT

Liquid chromatography/mass spectrometry (LC/MS) is extensively applied for the untargeted/targeted analyses of the herbal components, utilizing data-dependent acquisition (DDA) or data-independent acquisition (DIA) to record the fragmentation information useful for the structural elucidation. A new trend recently has emerged by integrating DDA and DIA to render the hybrid scan, which, unfortunately, has rarely been reported. Herein, by using the Vion™ ion-mobility quadrupole time-of-flight mass spectrometer, a hybrid scan strategy (HDMSE-HDDDA) was presented and validated by the untargeted characterization of the multicomponents from Carthamus tinctorius (safflower), in combination with reversed-phase ultra-high performance liquid chromatography (RP-UHPLC). Good chromatographic separation was achieved on an HSS T3 column within 26 min, while HDMSE-MS/MS was used to acquire the collision-induced dissociation MS2 data in the negative mode. Automatic workflows (e.g., data correction, precursors/product ions matching, and peak annotation) were well established on UNIFI™ (incorporating an in-house library recording 261 known compounds) to process the obtained MS2 data. Compared with single DDA or DIA, the hybrid approach of HDMSE-HDDDA better balanced between the coverage and reliability, led to high-definition MS spectra, offered useful collision cross section (CCS) information, and showed satisfactory identification performance comparable to MSE. A total of 141 components (involving 41 quinochalcones, 66 flavanols/flavones, 11 flavanones, 6 organic acids, 1 polyacetylene, and 16 others) were characterized from safflower. Moreover, CCS prediction could assist isomers characterization, to some extent. Conclusively, this hybrid scan approach enables a dimension-enhanced MS data acquisition strategy providing the complementary structural information, which more suits the chemical characterization of complex samples.


Subject(s)
Carthamus tinctorius , Chromatography, High Pressure Liquid/methods , Ions , Reproducibility of Results , Tandem Mass Spectrometry/methods
14.
Anal Chim Acta ; 1193: 339320, 2022 Feb 08.
Article in English | MEDLINE | ID: mdl-35058017

ABSTRACT

Data-dependent acquisition (DDA) and data-independent acquisition (DIA)-based MSn strategies are extensively applied in metabolites characterization. DDA gives accurate MSn information, but receives low coverage, while DIA covers the entire mass range, but the precursor-product ions matching often yields false positives. Currently available MS scan approaches rarely integrate DIA and DDA within a duty circle. Utilizing a Vion™ IM-QTOF (ion mobility-quadrupole time-of-flight) mass spectrometer, we report a novel hybrid scan approach, namely HDDIDDA, which involves three scan events: 1) IM-enabled full scan (MS1), 2) high-definition MSE (HDMSE) of all precursor ions (MS2); and 3) high-definition DDA (HDDDA) of top N precursors (MS2). As a proof-of-concept, the HDDIDDA approach combined with off-line two-dimensional liquid chromatography (2D-LC) was applied to characterize the multiple ingredients from a reputable Chinese patent medicine, Compound Danshen Dripping Pill (CDDP) used for treating the cardiovascular diseases. An off-line 2D-LC system by configuring an XBridge Amide column and an HSS T3 column showed a measurable orthogonality of 0.92 and enhanced the separation of co-eluting components. A fit-for-purpose HDDIDDA methodology was developed in the negative mode to characterize saponins and salvianolic acids, while tanshinones in the positive mode. Computational workflows to efficiently process the acquired HDMSE and HDDDA data were established, and the searching of an in-house CDDP library (recording 712 compounds) eventually characterized 403 components from CDDP, indicating approximate 12-fold improvement compared with the previous report. The HDDIDDA approach can measure collision cross section of each component, and merges the merits of DIA and DDA in MS2 data acquisition.


Subject(s)
Drugs, Chinese Herbal , Camphanes , Chromatography, High Pressure Liquid , Chromatography, Liquid , Ions , Panax notoginseng , Salvia miltiorrhiza
15.
Neural Regen Res ; 17(5): 963-971, 2022 May.
Article in English | MEDLINE | ID: mdl-34558509

ABSTRACT

Recent studies in patients with spinal cord injuries (SCIs) have confirmed the diagnostic potential of biofluid-based biomarkers, as a topic of increasing interest in relation to SCI diagnosis and treatment. This paper reviews the research progress and application prospects of recently identified SCI-related biomarkers. Many structural proteins, such as glial fibrillary acidic protein, S100-ß, ubiquitin carboxy-terminal hydrolase-L1, neurofilament light, and tau protein were correlated with the diagnosis, American Spinal Injury Association Impairment Scale, and prognosis of SCI to different degrees. Inflammatory factors, including interleukin-6, interleukin-8, and tumor necrosis factor α, are also good biomarkers for the diagnosis of acute and chronic SCI, while non-coding RNAs (microRNAs and long non-coding RNAs) also show diagnostic potential for SCI. Trace elements (Mg, Se, Cu, Zn) have been shown to be related to motor recovery and can predict motor function after SCI, while humoral markers can reflect the pathophysiological changes after SCI. These factors have the advantages of low cost, convenient sampling, and ease of dynamic tracking, but are also associated with disadvantages, including diverse influencing factors and complex level changes. Although various proteins have been verified as potential biomarkers for SCI, more convincing evidence from large clinical and prospective studies is thus required to identify the most valuable diagnostic and prognostic biomarkers for SCI.

16.
Carbohydr Polym ; 277: 118867, 2022 Feb 01.
Article in English | MEDLINE | ID: mdl-34893272

ABSTRACT

The role of polysaccharides in quality control of ginseng is underestimated. Large-scale comparison on the polysaccharides of Panax ginseng (PG), P. quinquefolius (PQ), P. notoginseng (PN), Red ginseng (RG), P. japonicus (ZJS), and P. japonicus var. major (ZZS), was performed by both chemical and biological approaches. Holistic fingerprinting at polysaccharide and the hydrolyzed oligosaccharide and monosaccharide levels utilized various chromatography methods, while OGD and OGD/R models on H9c2 cells were introduced to evaluate the protective effects on cell viability and mitochondrial function. Polysaccharides from six ginseng species exhibited remarkable content difference (RG > PG/ZZS/ZJS/PQ > PN), but weak differentiations in molecular weight distribution and oligosaccharide profiles, while Glc and GalA were richer for monosaccharide compositions of PG and RG polysaccharides, respectively. RG polysaccharides (25/50/100 µg/mL) showed significant cardiomyocyte protection by regulating mitochondrial functions. These new evidences may provide support for the supplementary role of polysaccharides in quality control of ginseng.


Subject(s)
Myocytes, Cardiac/drug effects , Panax/chemistry , Plants, Medicinal/chemistry , Polysaccharides/pharmacology , Protective Agents/pharmacology , Animals , Carbohydrate Conformation , Cell Line , Molecular Weight , Polysaccharides/chemistry , Protective Agents/chemistry , Rats
18.
Ther Clin Risk Manag ; 17: 889-901, 2021.
Article in English | MEDLINE | ID: mdl-34475758

ABSTRACT

OBJECTIVE: This study aimed to discover the ceRNAs network in the pathophysiological development of human colorectal cancer (CRC) and to screen biomarkers for target therapy and prognosis by using integrated bioinformatics analysis. METHODS: Data on gene expressions of mRNAs, miRNAs, and circRNAs and clinical information were downloaded from The Cancer Genome Atlas and Gene Expression Omnibus databases, respectively. Differentially expressed mRNAs (DEmRNAs) were identified by using the DESeq2 package of R software. Functional enrichment analysis was conducted using the ClusterProfiler package of R software. The protein-protein interaction (PPI) network was shown by the STRING website. Survival analysis of hub genes was performed using the survival package in R software. Interactions among hub genes, differentially expressed miRNAs (DEmiRNAs), and differentially expressed circRNAs (DEcircRNAs) were used to construct the ceRNAs network. RESULTS: A total of 412 DEmRNAs including 82 upregulated and 330 downregulated genes were screened out between 473 CRC and 41 normal samples. Two hundred and sixty DEcircRNAs including 253 upregulated and 7 downregulated genes were altered between 23 CRC and 23 normal samples. One hundred and ninety DEmiRNAs including 82 upregulated and 108 downregulated genes were obtained between 450 CRC and 8 normal samples. A ceRNAs and PPI network were successfully constructed, and TIMP1 associated with prognosis was employed. CONCLUSION: The present study identified a novel circRNAs-miRNAs-mRNA ceRNAs network, which implied that TIMP1 and related miRNAs, circRNAs were potential biomarkers underlying the development of CRC, providing new insights for survival predictions and therapeutic targets.

19.
Front Immunol ; 12: 672849, 2021.
Article in English | MEDLINE | ID: mdl-33995416

ABSTRACT

Background: Chronic rejection characterized by chronic allograft vasculopathy (CAV) remains a major obstacle to long-term graft survival. Due to multiple complicated mechanisms involved, a novel therapy for CAV remains exploration. Although mesenchymal stromal cells (MSCs) have been ubiquitously applied to various refractory immune-related diseases, rare research makes a thorough inquiry in CAV. Meanwhile, melatonin (MT), a wide spectrum of immunomodulator, plays a non-negligible role in transplantation immunity. Here, we have investigated the synergistic effects of MT in combination with MSCs in attenuation of CAV. Methods: C57BL/6 (B6) mouse recipients receiving BALB/c mouse donor aorta transplantation have been treated with MT and/or adipose-derived MSCs. Graft pathological changes, intragraft immunocyte infiltration, splenic immune cell populations, circulating donor-specific antibodies levels, cytokine profiles were detected on post-operative day 40. The proliferation capacity of CD4+ and CD8+ T cells, populations of Th1, Th17, and Tregs were also assessed in vitro. Results: Grafts in untreated recipients developed a typical pathological feature of CAV characterized by intimal thickening 40 days after transplantation. Compared to untreated and monotherapy groups, MT in combination with MSCs effectively ameliorated pathological changes of aorta grafts indicated by markedly decreased levels of intimal hyperplasia and the infiltration of CD4+ cells, CD8+ cells, and macrophages, but elevated infiltration of Foxp3+ cells. MT either alone or in combination with MSCs effectively inhibited the proliferation of T cells, decreased populations of Th1 and Th17 cells, but increased the proportion of Tregs in vitro. MT synergized with MSCs displayed much fewer splenic populations of CD4+ and CD8+ T cells, Th1 cells, Th17 cells, CD4+ central memory T cells (Tcm), as well as effector memory T cells (Tem) in aorta transplant recipients. In addition, the percentage of splenic Tregs was substantially increased in the combination therapy group. Furthermore, MT combined with MSCs markedly reduced serum levels of circulating allospecific IgG and IgM, as well as decreased the levels of pro-inflammatory IFN-γ, TNF-α, IL-1ß, IL-6, IL-17A, and MCP-1, but increased the level of IL-10 in the recipients. Conclusions: These data suggest that MT has synergy with MSCs to markedly attenuate CAV and provide a novel therapeutic strategy to improve the long-term allograft acceptance in transplant recipients.


Subject(s)
Aorta/transplantation , Graft Rejection/immunology , Melatonin/pharmacology , Mesenchymal Stem Cell Transplantation/methods , T-Lymphocytes/immunology , Allografts , Animals , Graft Rejection/pathology , Heart Transplantation/methods , Male , Mice , Mice, Inbred BALB C , Mice, Inbred C57BL
20.
Appl Environ Microbiol ; 86(20)2020 10 01.
Article in English | MEDLINE | ID: mdl-32801183

ABSTRACT

Inthomycins belong to a growing family of oxazole-containing polyketides and exhibit a broad spectrum of anti-oomycete and herbicidal activities. In this study, we purified inthomycins A and B from the metabolites of Streptomyces sp. strain SYP-A7193 and determined their chemical structures. Genome sequencing, comparative genomic analysis, and gene disruption of Streptomyces sp. SYP-A7193 showed that the inthomycin biosynthetic gene cluster (itm) belonged to the hybrid polyketide synthase (PKS)/nonribosomal peptide synthetase (NRPS) system. Functional domain comparison and disruption/complementation experiments of itm12 resulted in the complete loss of inthomycins A and B and the subsequent restoration of their production, confirming that itm12 encodes a discrete acyltransferase (AT), and hence, itm was considered to belong to the trans-AT type I PKS system. Moreover, the disruption/complementation experiments of itm15 also resulted in the loss and restoration of inthomycin A and B formation. Further gene cloning, expression, purification, and activity verification of itm15 revealed that Itm15 is a cyclodehydratase that catalyzes a straight-chain dehydration reaction to form an oxazole ring for the biosynthesis of inthomycins A and B. Thus, we discovered a novel enzyme that catalyzes oxazole ring formation and elucidated the complete biosynthetic pathway of inthomycins.IMPORTANCEStreptomyces species produce numerous secondary metabolites with diverse structures and pharmacological activities that are beneficial for human health and have several applications in agriculture. In this study, hybrid nonribosomal peptide synthetase/polyketide synthase metabolites inthomycins A and B were isolated from after fermenting Streptomyces sp. SYP-A7193. Genome sequencing, gene disruption, gene complementation, heterologous expression, and activity assay revealed that the biosynthesis gene assembly line of inthomycins A and B was a 95.3-kb trans-AT type I PKS system in the strain SYP-A7193. More importantly, Itm15, a cyclodehydratase, was identified to be an oxazole ring formation enzyme required for the biosynthesis of inthomycins A and B; it is significant to discover this catalyzation reaction in the PKS/NRPS system in the field of microbiology. Our findings could provide further insights into the diversity of trans-AT type I PKS systems and the mechanism of oxazole cyclization involved in the biosynthesis of natural products.


Subject(s)
Fatty Acids, Unsaturated/chemistry , Genes, Bacterial , Multigene Family , Oxazoles/metabolism , Streptomyces/genetics , Fatty Acids, Unsaturated/isolation & purification , Oxazoles/chemistry , Oxazoles/isolation & purification , Streptomyces/chemistry , Streptomyces/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...