Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 56
Filter
Add more filters










Publication year range
1.
Sci Rep ; 14(1): 12826, 2024 06 04.
Article in English | MEDLINE | ID: mdl-38834813

ABSTRACT

Lamin A/C gene (LMNA) mutations contribute to severe striated muscle laminopathies, affecting cardiac and skeletal muscles, with limited treatment options. In this study, we delve into the investigations of five distinct LMNA mutations, including three novel variants and two pathogenic variants identified in patients with muscular laminopathy. Our approach employs zebrafish models to comprehensively study these variants. Transgenic zebrafish expressing wild-type LMNA and each mutation undergo extensive morphological profiling, swimming behavior assessments, muscle endurance evaluations, heartbeat measurement, and histopathological analysis of skeletal muscles. Additionally, these models serve as platform for focused drug screening. We explore the transcriptomic landscape through qPCR and RNAseq to unveil altered gene expression profiles in muscle tissues. Larvae of LMNA(L35P), LMNA(E358K), and LMNA(R453W) transgenic fish exhibit reduced swim speed compared to LMNA(WT) measured by DanioVision. All LMNA transgenic adult fish exhibit reduced swim speed compared to LMNA(WT) in T-maze. Moreover, all LMNA transgenic adult fish, except LMNA(E358K), display weaker muscle endurance than LMNA(WT) measured by swimming tunnel. Histochemical staining reveals decreased fiber size in all LMNA mutations transgenic fish, excluding LMNA(WT) fish. Interestingly, LMNA(A539V) and LMNA(E358K) exhibited elevated heartbeats. We recognize potential limitations with transgene overexpression and conducted association calculations to explore its effects on zebrafish phenotypes. Our results suggest lamin A/C overexpression may not directly impact mutant phenotypes, such as impaired swim speed, increased heart rates, or decreased muscle fiber diameter. Utilizing LMNA zebrafish models for drug screening, we identify L-carnitine treatment rescuing muscle endurance in LMNA(L35P) and creatine treatment reversing muscle endurance in LMNA(R453W) zebrafish models. Creatine activates AMPK and mTOR pathways, improving muscle endurance and swim speed in LMNA(R453W) fish. Transcriptomic profiling reveals upstream regulators and affected genes contributing to motor dysfunction, cardiac anomalies, and ion flux dysregulation in LMNA mutant transgenic fish. These findings faithfully mimic clinical manifestations of muscular laminopathies, including dysmorphism, early mortality, decreased fiber size, and muscle dysfunction in zebrafish. Furthermore, our drug screening results suggest L-carnitine and creatine treatments as potential rescuers of muscle endurance in LMNA(L35P) and LMNA(R453W) zebrafish models. Our study offers valuable insights into the future development of potential treatments for LMNA-related muscular laminopathy.


Subject(s)
Animals, Genetically Modified , Carnitine , Creatine , Lamin Type A , Muscle, Skeletal , Mutation , Zebrafish , Animals , Lamin Type A/genetics , Lamin Type A/metabolism , Muscle, Skeletal/metabolism , Muscle, Skeletal/pathology , Muscle, Skeletal/drug effects , Creatine/metabolism , Carnitine/metabolism , Disease Models, Animal , Laminopathies/genetics , Laminopathies/metabolism , Swimming , Transcriptome , Humans
2.
Biomed Pharmacother ; 173: 116404, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38471275

ABSTRACT

High-fat diet (HFD)-induced fatty liver disease is a deteriorating risk factor for Alzheimer's disease (AD). Mitigating fatty liver disease has been shown to attenuate AD-like pathology in animal models. However, it remains unclear whether enhancing Aß clearance through immunotherapy would in turn attenuate HFD-induced fatty liver or whether its efficacy would be compromised by long-term exposure to HFD. Here, the therapeutic potentials of an anti-Aß antibody, NP106, was investigated in APP/PS1 mice by HFD feeding for 44 weeks. The data demonstrate that NP106 treatment effectively reduced Aß burden and pro-inflammatory cytokines in HFD-fed APP/PS1 mice and ameliorated HFD-aggravated cognitive impairments during the final 18 weeks of the study. The rejuvenating characteristics of microglia were evident in APP/PS1 mice with NP106 treatment, namely enhanced microglial Aß phagocytosis and attenuated microglial lipid accumulation, which may explain the benefits of NP106. Surprisingly, NP106 also reduced HFD-induced hyperglycemia, fatty liver, liver fibrosis, and hepatic lipids, concomitant with modifications in the expressions of genes involved in hepatic lipogenesis and fatty acid oxidation. The data further reveal that brain Aß burden and behavioral deficits were positively correlated with the severity of fatty liver disease and fasting serum glucose levels. In conclusion, our study shows for the first time that anti-Aß immunotherapy using NP106, which alleviates AD-like disorders in APP/PS1 mice, ameliorates fatty liver disease. Minimizing AD-related pathology and symptoms may reduce the vicious interplay between central AD and peripheral fatty liver disease, thereby highlighting the importance of developing AD therapies from a systemic disease perspective.


Subject(s)
Alzheimer Disease , Fatty Liver , Liver Diseases , Mice , Animals , Amyloid beta-Protein Precursor/metabolism , Mice, Transgenic , Diet, High-Fat/adverse effects , Alzheimer Disease/metabolism , Brain/metabolism , Liver Diseases/metabolism , Fatty Liver/metabolism , Disease Models, Animal , Amyloid beta-Peptides/metabolism
3.
Adv Biol (Weinh) ; 7(7): e2200310, 2023 07.
Article in English | MEDLINE | ID: mdl-36950773

ABSTRACT

Carassius auratus complex formula (CACF) is a traditional Chinese medicine known for its antidiabetic effects. Hepatocellular carcinoma (HCC) is a major cause of cancer-related deaths worldwide, and there are currently no effective therapies for advanced HCC. This study explores the comprehensive effects and possible mechanisms of CACF on HCC. The results show that CACF reduces the viability of hepatoma cells in vitro, while benefiting normal hepatocytes. In addition, CACF inhibits hepatoma cell growth in a zebrafish xenotransplantation model and decreases lipid accumulation, represses inflammation and cell proliferation markers in fatty acid translocase (CD36) transgenic zebrafish, and inhibits the expression of cell proliferation and ß-catenin downstream targets in telomerase (tert) transgenic zebrafish models. Ingenuity Pathway Analysis reveals that CACF exerts multiple functions, including reduction of inflammation and inhibition of lipid transporter and PPAR signaling pathway. Surprisingly, CACF also regulates the expression of genes and reduces coronavirus infection and pathogenesis in a zebrafish model. CACF treatment is validated to regulate the expression of genes for anti-coronavirus activity. Mechanistically, CACF stabilizes G-quadruplex and reduces cell senescence associated ß-galactosidase activity. In summary, CACF may be a promising therapeutic agent with multiple functions including anticancer, anti-inflammation, and anti-microorganisms in a zebrafish model.


Subject(s)
COVID-19 , Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Carcinoma, Hepatocellular/metabolism , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , Zebrafish/genetics , Goldfish , Carcinogenesis , Cellular Senescence , Inflammation , Lipids/therapeutic use
4.
Antioxidants (Basel) ; 12(1)2023 Jan 04.
Article in English | MEDLINE | ID: mdl-36670987

ABSTRACT

Deregulation of redox homeostasis is often associated with an accelerated aging process. Ribose-5-phosphate isomerase A (RPIA) mediates redox homeostasis in the pentose phosphate pathway (PPP). Our previous study demonstrated that Rpi knockdown boosts the healthspan in Drosophila. However, whether the knockdown of rpia-1, the Rpi ortholog in Caenorhabditis elegans, can improve the healthspan in C. elegans remains unknown. Here, we report that spatially and temporally limited knockdown of rpia-1 prolongs lifespan and improves the healthspan in C. elegans, reflecting the evolutionarily conserved phenotypes observed in Drosophila. Ubiquitous and pan-neuronal knockdown of rpia-1 both enhance tolerance to oxidative stress, reduce polyglutamine aggregation, and improve the deteriorated body bending rate caused by polyglutamine aggregation. Additionally, rpia-1 knockdown temporally in the post-developmental stage and spatially in the neuron display enhanced lifespan. Specifically, rpia-1 knockdown in glutamatergic or cholinergic neurons is sufficient to increase lifespan. Importantly, the lifespan extension by rpia-1 knockdown requires the activation of autophagy and AMPK pathways and reduced TOR signaling. Moreover, the RNA-seq data support our experimental findings and reveal potential novel downstream targets. Together, our data disclose the specific spatial and temporal conditions and the molecular mechanisms for rpia-1 knockdown-mediated longevity in C. elegans. These findings may help the understanding and improvement of longevity in humans.

5.
Int J Mol Sci ; 23(20)2022 Oct 11.
Article in English | MEDLINE | ID: mdl-36292952

ABSTRACT

Lysine-deficient protein kinase-1 (WNK1) is critical for both embryonic angiogenesis and tumor-induced angiogenesis. However, the downstream effectors of WNK1 during these processes remain ambiguous. In this study, we identified that oxidative stress responsive 1b (osr1b) is upregulated in endothelial cells in both embryonic and tumor-induced angiogenesis in zebrafish, accompanied by downregulation of protein phosphatase 2A (pp2a) subunit ppp2r1bb. In addition, wnk1a and osr1b are upregulated in two liver cancer transgenic fish models: [tert x p53-/-] and [HBx,src,p53-/-,RPIA], while ppp2r1bb is downregulated in [tert x p53-/-]. Furthermore, using HUVEC endothelial cells co-cultured with HepG2 hepatoma cells, we confirmed that WNK1 plays a critical role in the induction of hepatoma cell migration in both endothelial cells and hepatoma cells. Moreover, overexpression of OSR1 can rescue the reduced cell migration caused by shWNK1 knockdown in HUVEC cells, indicating OSR1 is downstream of WNK1 in endothelial cells promoting hepatoma cell migration. Overexpression of PPP2R1A can rescue the increased cell migration caused by WNK1 overexpression in HepG2, indicating that PPP2R1A is a downstream effector in hepatoma. The combinatorial treatment with WNK1 inhibitor (WNK463) and OSR1 inhibitor (Rafoxanide) plus oligo-fucoidan via oral gavage to feed [HBx,src,p53-/-,RPIA] transgenic fish exhibits much more significant anticancer efficacy than Regorafenib for advanced HCC. Importantly, oligo-fucoidan can reduce the cell senescence marker-IL-1ß expression. Furthermore, oligo-fucoidan reduces the increased cell senescence-associated ß-galactosidase activity in tert transgenic fish treated with WNK1-OSR1 inhibitors. Our results reveal the WNK1-OSR1-PPP2R1A axis plays a critical role in both endothelial and hepatoma cells during tumor-induced angiogenesis promoting cancer cell migration. By in vitro and in vivo experiments, we further uncover the molecular mechanisms of WNK1 and its downstream effectors during tumor-induced angiogenesis. Targeting WNK1-OSR1-mediated anti-angiogenesis and anti-cancer activity, the undesired inflammation response caused by inhibiting WNK1-OSR1 can be attenuated by the combination therapy with oligo-fucoidan and may improve the efficacy.


Subject(s)
Carcinoma, Hepatocellular , Liver Neoplasms , Animals , Humans , WNK Lysine-Deficient Protein Kinase 1/genetics , WNK Lysine-Deficient Protein Kinase 1/metabolism , Protein Serine-Threonine Kinases/genetics , Intracellular Signaling Peptides and Proteins/genetics , Intracellular Signaling Peptides and Proteins/metabolism , Carcinoma, Hepatocellular/drug therapy , Carcinoma, Hepatocellular/genetics , Zebrafish/metabolism , Rafoxanide , Protein Phosphatase 2/metabolism , Lysine , Tumor Suppressor Protein p53 , Minor Histocompatibility Antigens , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Neovascularization, Pathologic/drug therapy , Neovascularization, Pathologic/genetics , Human Umbilical Vein Endothelial Cells/metabolism , Transcription Factors/metabolism , beta-Galactosidase/metabolism
6.
Int J Mol Sci ; 23(14)2022 Jul 17.
Article in English | MEDLINE | ID: mdl-35887232

ABSTRACT

Ribose-5-phosphate isomerase A (RPIA) regulates tumorigenesis in liver and colorectal cancer. However, the role of RPIA in lung cancer remains obscure. Here we report that the suppression of RPIA diminishes cellular proliferation and activates autophagy, apoptosis, and cellular senescence in lung cancer cells. First, we detected that RPIA protein was increased in the human lung cancer versus adjust normal tissue via tissue array. Next, the knockdown of RPIA in lung cancer cells displayed autophagic vacuoles, enhanced acridine orange staining, GFP-LC3 punctae, accumulated autophagosomes, and showed elevated levels of LC3-II and reduced levels of p62, together suggesting that the suppression of RPIA stimulates autophagy in lung cancer cells. In addition, decreased RPIA expression induced apoptosis by increasing levels of Bax, cleaved PARP and caspase-3 and apoptotic cells. Moreover, RPIA knockdown triggered cellular senescence and increased p53 and p21 levels in lung cancer cells. Importantly, RPIA knockdown elevated reactive oxygen species (ROS) levels. Treatment of ROS scavenger N-acetyl-L-cysteine (NAC) reverts the activation of autophagy, apoptosis and cellular senescence by RPIA knockdown in lung cancer cells. In conclusion, RPIA knockdown induces ROS levels to activate autophagy, apoptosis, and cellular senescence in lung cancer cells. Our study sheds new light on RPIA suppression in lung cancer therapy.


Subject(s)
Autophagy , Lung Neoplasms , Aldose-Ketose Isomerases , Apoptosis , Cell Line, Tumor , Cellular Senescence , Humans , Lung Neoplasms/drug therapy , Lung Neoplasms/metabolism , Reactive Oxygen Species/metabolism
7.
Cancer Sci ; 113(5): 1601-1612, 2022 May.
Article in English | MEDLINE | ID: mdl-35253323

ABSTRACT

Sorafenib is a multikinase inhibitor for the standard treatment of advanced liver cancer patients. However, acquired resistance to sorafenib is responsible for a poor prognosis. Therefore, uncovering the molecular mechanisms underlying sorafenib sensitization can provide biomarkers for sorafenib treatment and improve sorafenib activity in a precise medication. Here, we report that epigenetic suppression of Dicer by the HOXB-AS3/EZH2 complex is responsible for sorafenib resistance. We observed that Dicer expression is inversely correlated with EZH2 levels, HOXB-AS3 expression, sorafenib resistance, and cancer stem cell properties in liver cancer patients. Furthermore, ectopic expression of Dicer induced liver cancer cells resensitization to sorafenib. Mechanistically, we found HOXB-AS3 physically interacts with EZH2 and recruits EZH2 to the Dicer promoter, resulting in epigenetic suppression of Dicer expression. These findings reveal that HOXB-AS3/EZH2 complex-mediated Dicer suppression plays an important role in sorafenib resistance and cancer stemness and provide potential therapeutic strategies for diagnosing and treating liver cancer patients.


Subject(s)
Carcinoma, Hepatocellular , DEAD-box RNA Helicases/genetics , Liver Neoplasms , RNA, Long Noncoding , Ribonuclease III/genetics , Carcinoma, Hepatocellular/metabolism , Cell Line, Tumor , Cell Proliferation , Drug Resistance, Neoplasm/genetics , Enhancer of Zeste Homolog 2 Protein/genetics , Enhancer of Zeste Homolog 2 Protein/metabolism , Gene Expression Regulation, Neoplastic , Humans , Liver Neoplasms/drug therapy , Liver Neoplasms/genetics , Liver Neoplasms/metabolism , RNA, Long Noncoding/metabolism , Sorafenib/pharmacology
8.
Diagnostics (Basel) ; 12(1)2022 Jan 14.
Article in English | MEDLINE | ID: mdl-35054370

ABSTRACT

Bladder cancer has been increasing globally. Urinary cytology is considered a major screening method for bladder cancer, but it has poor sensitivity. This study aimed to utilize clinical laboratory data and machine learning methods to build predictive models of bladder cancer. A total of 1336 patients with cystitis, bladder cancer, kidney cancer, uterus cancer, and prostate cancer were enrolled in this study. Two-step feature selection combined with WEKA and forward selection was performed. Furthermore, five machine learning models, including decision tree, random forest, support vector machine, extreme gradient boosting (XGBoost), and light gradient boosting machine (GBM) were applied. Features, including calcium, alkaline phosphatase (ALP), albumin, urine ketone, urine occult blood, creatinine, alanine aminotransferase (ALT), and diabetes were selected. The lightGBM model obtained an accuracy of 84.8% to 86.9%, a sensitivity 84% to 87.8%, a specificity of 82.9% to 86.7%, and an area under the curve (AUC) of 0.88 to 0.92 in discriminating bladder cancer from cystitis and other cancers. Our study provides a demonstration of utilizing clinical laboratory data to predict bladder cancer.

9.
Int J Mol Sci ; 24(1)2022 Dec 29.
Article in English | MEDLINE | ID: mdl-36614054

ABSTRACT

Altered metabolism is a hallmark of aging. The tricarboxylic acid cycle (TCA cycle) is an essential metabolic pathway and plays an important role in lifespan regulation. Supplementation of α-ketoglutarate, a metabolite converted by isocitrate dehydrogenase alpha-1 (idha-1) in the TCA cycle, increases lifespan in C. elegans. However, whether idha-1 can regulate lifespan in C. elegans remains unknown. Here, we reported that the expression of idha-1 modulates lifespan and oxidative stress tolerance in C. elegans. Transgenic overexpression of idha-1 extends lifespan, increases the levels of NADPH/NADP+ ratio, and elevates the tolerance to oxidative stress. Conversely, RNAi knockdown of idha-1 exhibits the opposite effects. In addition, the longevity of eat-2 (ad1116) mutant via dietary restriction (DR) was reduced by idha-1 knockdown, indicating that idha-1 may play a role in DR-mediated longevity. Furthermore, idha-1 mediated lifespan may depend on the target of rapamycin (TOR) signaling. Moreover, the phosphorylation levels of S6 kinase (p-S6K) inversely correlate with idha-1 expression, supporting that the idha-1-mediated lifespan regulation may involve the TOR signaling pathway. Together, our data provide new insights into the understanding of idha-1 new function in lifespan regulation probably via DR and TOR signaling and in oxidative stress tolerance in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins , Caenorhabditis elegans , Isocitrate Dehydrogenase , Longevity , Oxidative Stress , Animals , Caenorhabditis elegans/enzymology , Caenorhabditis elegans/genetics , Caenorhabditis elegans Proteins/genetics , Caenorhabditis elegans Proteins/metabolism , Isocitrate Dehydrogenase/genetics , Isocitrate Dehydrogenase/metabolism , Longevity/genetics
10.
Aging Cell ; 20(6): e13379, 2021 06.
Article in English | MEDLINE | ID: mdl-34061429

ABSTRACT

Increased levels of dysfunctional mitochondria within skeletal muscle are correlated with numerous age-related physiopathological conditions. Improving our understanding of the links between mitochondrial function and muscle proteostasis, and the role played by individual genes and regulatory networks, is essential to develop treatments for these conditions. One potential player is the mitochondrial outer membrane protein Fis1, a crucial fission factor heavily involved in mitochondrial dynamics in yeast but with an unknown role in higher-order organisms. By using Drosophila melanogaster as a model, we explored the effect of Fis1 mutations generated by transposon Minos-mediated integration. Mutants exhibited a higher ratio of damaged mitochondria with age as well as elevated reactive oxygen species levels compared with controls. This caused an increase in oxidative stress, resulting in large accumulations of ubiquitinated proteins, accelerated muscle function decline, and mitochondrial myopathies in young mutant flies. Ectopic expression of Fis1 isoforms was sufficient to suppress this phenotype. Loss of Fis1 led to unbalanced mitochondrial proteostasis within fly muscle, decreasing both flight capabilities and lifespan. Fis1 thus clearly plays a role in fly mitochondrial dynamics. Further investigations into the detailed function of Fis1 are necessary for exploring how mitochondrial function correlates with muscle health during aging.


Subject(s)
Drosophila melanogaster/genetics , Membrane Proteins/metabolism , Mitochondrial Proteins/metabolism , Muscle, Skeletal/metabolism , Proteostasis/genetics , Aging , Animals
11.
Carcinogenesis ; 42(7): 951-960, 2021 07 16.
Article in English | MEDLINE | ID: mdl-33993270

ABSTRACT

Inhibitors of DNA binding and cell differentiation (ID) proteins regulate cellular differentiation and tumor progression. Whether ID family proteins serve as a linkage between pathological differentiation and cancer stemness in colorectal cancer is largely unknown. Here, the expression of ID4, but not other ID family proteins, was enriched in LGR5-high colon cancer stem cells. Its high expression was associated with poor pathological differentiation of colorectal tumors and shorter survival in patients. Knockdown of ID4 inhibited the growth and dissemination of colon cancer cells, while enhancing chemosensitivity. Through gene expression profiling analysis, brain-derived neurotrophic factor (BDNF) was identified as a downstream target of ID4 expression in colorectal cancer. BDNF knockdown decreased the growth and migration of colon cancer cells, and its expression enhanced dissemination, anoikis resistance and chemoresistance. ID4 silencing attenuated the epithelial-to-mesenchymal transition pattern in colon cancer cells. Gene cluster analysis revealed that ID4 and BDNF expression was clustered with mesenchymal markers and distant from epithelial genes. BDNF silencing decreased the expression of mesenchymal markers Vimentin, CDH2 and SNAI1. These findings demonstrated that ID4-BDNF signaling regulates colorectal cancer survival, with the potential to serve as a prognostic marker in colorectal cancer.


Subject(s)
Biomarkers, Tumor/metabolism , Brain-Derived Neurotrophic Factor/metabolism , Carcinogenesis/pathology , Colorectal Neoplasms/pathology , Gene Expression Regulation, Neoplastic , Inhibitor of Differentiation Proteins/metabolism , Neoplastic Stem Cells/pathology , Apoptosis , Biomarkers, Tumor/genetics , Brain-Derived Neurotrophic Factor/genetics , Carcinogenesis/genetics , Carcinogenesis/metabolism , Cell Cycle , Cell Movement , Cell Proliferation , Colorectal Neoplasms/genetics , Colorectal Neoplasms/metabolism , Epithelial-Mesenchymal Transition , Humans , Inhibitor of Differentiation Proteins/genetics , Neoplastic Stem Cells/metabolism , Prognosis , Survival Rate , Tumor Cells, Cultured
12.
J Biomed Sci ; 28(1): 8, 2021 Jan 12.
Article in English | MEDLINE | ID: mdl-33435938

ABSTRACT

BACKGROUND: Congenital myopathy (CM) is a group of clinically and genetically heterogeneous muscle disorders, characterized by muscle weakness and hypotonia from birth. Currently, no definite treatment exists for CM. A de novo mutation in Tropomyosin 3-TPM3(E151G) was identified from a boy diagnosed with CM, previously TPM3(E151A) was reported to cause CM. However, the role of TPM3(E151G) in CM is unknown. METHODS: Histopathological, swimming behavior, and muscle endurance were monitored in TPM3 wild-type and mutant transgenic fish, modelling CM. Gene expression profiling of muscle of the transgenic fish were studied through RNAseq, and mitochondria respiration was investigated. RESULTS: While TPM3(WT) and TPM3(E151A) fish show normal appearance, amazingly a few TPM3(E151G) fish display either no tail, a crooked body in both F0 and F1 adults. Using histochemical staining for the muscle biopsy, we found TPM3(E151G) displays congenital fiber type disproportion and TPM3(E151A) resembles nemaline myopathy. TPM3(E151G) transgenic fish dramatically swimming slower than those in TPM3(WT) and TPM3(E151A) fish measured by DanioVision and T-maze, and exhibit weaker muscle endurance by swimming tunnel instrument. Interestingly, L-carnitine treatment on TPM3(E151G) transgenic larvae significantly improves the muscle endurance by restoring the basal respiration and ATP levels in mitochondria. With RNAseq transcriptomic analysis of the expression profiling from the muscle specimens, it surprisingly discloses large downregulation of genes involved in pathways of sodium, potassium, and calcium channels, which can be rescued by L-carnitine treatment, fatty acid metabolism was differentially dysregulated in TPM3(E151G) fish and rescued by L-carnitine treatment. CONCLUSIONS: These results demonstrate that TPM3(E151G) and TPM3(E151A) exhibit different pathogenicity, also have distinct gene regulatory profiles but the ion channels were downregulated in both mutants, and provides a potential mechanism of action of TPM3 pathophysiology. Our results shed a new light in the future development of potential treatment for TPM3-related CM.


Subject(s)
Carnitine/metabolism , Myotonia Congenita/metabolism , Tropomyosin/genetics , Animals , Animals, Genetically Modified , Muscle, Skeletal/metabolism , Tropomyosin/chemistry , Tropomyosin/metabolism , Zebrafish/abnormalities , Zebrafish/metabolism
13.
iScience ; 23(9): 101486, 2020 Aug 21.
Article in English | MEDLINE | ID: mdl-32891883

ABSTRACT

Physiological trade-offs between mosquito immune response and reproductive capability can arise due to insufficient resource availability. C-type lectin family members may be involved in these processes. We established a GCTL-3-/- mutant Aedes aegypti using CRISPR/Cas9 to investigate the role of GCTL-3 in balancing the costs associated with immune responses to arboviral infection and reproduction. GCTL-3-/- mutants showed significantly reduced DENV-2 infection rate and gut commensal microbiota populations, as well as upregulated JAK/STAT, IMD, Toll, and AMPs immunological pathways. Mutants also had significantly shorter lifespans than controls and laid fewer eggs due to defective germ line development. dsRNA knock-down of Attacin and Gambicin, two targets of the AMPs pathway, partially rescued this reduction in reproductive capabilities. Upregulation of immune response following GCTL-3 knock-out therefore comes at a cost to reproductive fitness. Knock-out of other lectins may further improve our knowledge of the molecular and genetic mechanisms underlying reproduction-immunity trade-offs in mosquitoes.

14.
Aging Cell ; 19(8): e13179, 2020 08.
Article in English | MEDLINE | ID: mdl-32627932

ABSTRACT

Brain function has been implicated to control the aging process and modulate lifespan. However, continuous efforts remain for the identification of the minimal sufficient brain region and the underlying mechanism for neuronal regulation of longevity. Here, we show that the Drosophila lifespan is modulated by rab27 functioning in a small subset of neurons of the mushroom bodies (MB), a brain structure that shares analogous functions with mammalian hippocampus and hypothalamus. Depleting rab27 in the α/ßp neurons of the MB is sufficient to extend lifespan, enhance systemic stress responses, and alter energy homeostasis, all without trade-offs in major life functions. Within the α/ßp neurons, rab27KO causes the mislocalization of phosphorylated S6K thus attenuates TOR signaling, resulting in decreased protein synthesis and reduced neuronal activity. Consistently, expression of dominant-negative S6K in the α/ßp neurons increases lifespan. Furthermore, the expression of phospho-mimetic S6 in α/ßp neurons of rab27KO rescued local protein synthesis and reversed lifespan extension. These findings demonstrate that inhibiting TOR-mediated protein synthesis in α/ßp neurons is sufficient to promote longevity.


Subject(s)
Mushroom Bodies/chemistry , Neurons/metabolism , rab27 GTP-Binding Proteins/metabolism , Animals , Drosophila
15.
Nat Commun ; 11(1): 2592, 2020 05 22.
Article in English | MEDLINE | ID: mdl-32444642

ABSTRACT

Mitochondrial aging, which results in mitochondrial dysfunction, is strongly linked to many age-related diseases. Aging is associated with mitochondrial enlargement and transport of cytosolic proteins into mitochondria. The underlying homeostatic mechanisms that regulate mitochondrial morphology and function, and their breakdown during aging, remain unclear. Here, we identify a mitochondrial protein trafficking pathway in Drosophila melanogaster involving the mitochondria-associated protein Dosmit. Dosmit induces mitochondrial enlargement and the formation of double-membraned vesicles containing cytosolic protein within mitochondria. The rate of vesicle formation increases with age. Vesicles originate from the outer mitochondrial membrane as observed by tracking Tom20 localization, and the process is mediated by the mitochondria-associated Rab32 protein. Dosmit expression level is closely linked to the rate of ubiquitinated protein aggregation, which are themselves associated with age-related diseases. The mitochondrial protein trafficking route mediated by Dosmit offers a promising target for future age-related mitochondrial disease therapies.


Subject(s)
Cytoplasm/metabolism , Drosophila Proteins/metabolism , Drosophila melanogaster/metabolism , Iron-Sulfur Proteins/metabolism , Membrane Proteins/metabolism , Membrane Transport Proteins/metabolism , Mitochondria/metabolism , Mitochondrial Membrane Transport Proteins/metabolism , Mitochondrial Proteins/metabolism , rab GTP-Binding Proteins/metabolism , Age Factors , Animals , Animals, Genetically Modified , Cytoskeletal Proteins/metabolism , Drosophila melanogaster/physiology , GTP-Binding Proteins/metabolism , Gene Expression Regulation , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Longevity , Mice , Mitochondria/genetics , Mitochondria/pathology , Mitochondrial Precursor Protein Import Complex Proteins , Protein Domains , Protein Transport , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Transport Vesicles/metabolism , Ubiquitinated Proteins/metabolism
16.
Cancers (Basel) ; 12(3)2020 Mar 02.
Article in English | MEDLINE | ID: mdl-32131390

ABSTRACT

With-no-lysine (K)-1 (WNK1) is the founding member of family of four protein kinases with atypical placement of catalytic lysine that play important roles in regulating epithelial ion transport. Gain-of-function mutations of WNK1 and WNK4 cause a mendelian hypertension and hyperkalemic disease. WNK1 is ubiquitously expressed and essential for embryonic angiogenesis in mice. Increasing evidence indicates the role of WNK kinases in tumorigenesis at least partly by stimulating tumor cell proliferation. Here, we show that human hepatoma cells xenotransplanted into zebrafish produced high levels of vascular endothelial growth factor (VEGF) and WNK1, and induced expression of zebrafish wnk1. Knockdown of wnk1 in zebrafish decreased tumor-induced ectopic vessel formation and inhibited tumor proliferation. Inhibition of WNK1 or its downstream kinases OSR1 (oxidative stress responsive kinase 1)/SPAK (Ste20-related proline alanine rich kinase) using chemical inhibitors decreased ectopic vessel formation as well as proliferation of xenotransplanted hepatoma cells. The effect of WNK and OSR1 inhibitors is greater than that achieved by inhibitor of VEGF signaling cascade. These inhibitors also effectively inhibited tumorigenesis in two separate transgenic zebrafish models of intestinal and hepatocellular carcinomas. Endothelial-specific overexpression of wnk1 enhanced tumorigenesis in transgenic carcinogenic fish, supporting endothelial cell-autonomous effect of WNK1 in tumor promotion. Thus, WNK1 can promote tumorigenesis by multiple effects that include stimulating tumor angiogenesis. Inhibition of WNK1 may be a potent anti-cancer therapy.

17.
Cancers (Basel) ; 11(7)2019 Jul 02.
Article in English | MEDLINE | ID: mdl-31269749

ABSTRACT

Aurora A kinase (AURKA) is an important regulator in mitotic progression and is overexpressed frequently in human cancers, including hepatocellular carcinoma (HCC). Many AURKA mutations were identified in cancer patients. Overexpressing wild-type Aurka developed a low incidence of hepatic tumors after long latency in mice. However, none of the AURKA mutant animal models have ever been described. The mechanism of mutant AURKA-mediated hepatocarcinogenesis is still unclear. A novel AURKA mutation with a.a.352 Valine to Isoleucine (V352I) was identified from clinical specimens. By using liver-specific transgenic fish overexpressing both the mutant and wild-type AURKA, the AURKA(V352I)-induced hepatocarcinogenesis was earlier and much more severe than wild-type AURKA. Although an increase of the expression of lipogenic enzyme and lipogenic factor was observed in both AURKA(V352I) and AURKA(WT) transgenic fish, AURKA(V352I) has a greater probability to promote fibrosis at 3 months compared to AURKA(WT). Furthermore, the expression levels of cell cycle/proliferation markers were higher in the AURKA(V352I) mutant than AURKA(WT) in transgenic fish, implying that the AURKA(V352I) mutant may accelerate HCC progression. Moreover, we found that the AURKA(V352I) mutant activates AKT signaling and increases nuclear ß-catenin, but AURKA(WT) only activates membrane form ß-catenin, which may account for the differences. In this study, we provide a new insight, that the AURKA(V352I) mutation contributes to early onset hepatocarcinogenesis, possibly through activation of different pathways than AURKA(WT). This transgenic fish may serve as a drug-screening platform for potential precision medicine therapeutics.

18.
J Exp Clin Cancer Res ; 38(1): 281, 2019 Jun 28.
Article in English | MEDLINE | ID: mdl-31253192

ABSTRACT

BACKGROUND: Discoidin domain receptor-1 (DDR1) tyrosine kinase is highly expressed in a variety of human cancers and involved in various steps of tumorigenesis. However, the precise mechanisms underlying the abnormal expression of DDR1 in oral squamous cell carcinoma (OSCC) has not been well investigated. METHODS: The expression of DDR1 on OSCC patients was determine by quantitative real-time PCR (qRT-PCR) and immunohistochemistry. Specific targeting by miRNAs was determined by software prediction, luciferase reporter assay, and correlation with target protein expression. The functions of miR-486-3p and DDR1 were accessed by MTT and Annexin V analyses using gain- and loss-of-function approaches. Chromatin immunoprecipitation (ChIP) and methylation specific PCR (MSP) were performed to explore the molecular mechanisms by arecoline treatment. RESULTS: Here, we reported that DDR1 was significantly upregulated in OSCC tissues and its levels were inversely correlated with miR-486-3p expression. The experimental results in vitro confirmed that miR-486-3p decreased DDR1 expression by targeting the 3'-UTR of DDR1 mRNA. Overexpression of miR-486-3p led to growth inhibition and apoptosis induction with a similar function by knockdown of DDR1. Aberrant methylation of ANK1 promoter was a highly prevalent in OSCC and contributes to oral carcinogenesis by epigenetic silencing of ANK1 and miR-486-3p. We found that miR-486-3p can be transcriptionally co-regulated with its host gene ANK1 through epigenetic repression. DNA methylation inhibitor treatment re-expressed ANK1 and miR-486-3p. Importantly, arecoline, a major betel nut alkaloid, recruited DNMT3B binding to ANK1 promoter for DNA methylation and then attenuated the expression of miR-486-3p in OSCC. CONCLUSION: This study was the first to demonstrate that betel nut alkaloid may recruit DNMT3B to regulate miR-486-3p/DDR1 axis in oral cancer andmiR-486-3p and DDR1 may serve as potential therapeutic targets of oral cancer.


Subject(s)
Carcinoma, Squamous Cell/genetics , Discoidin Domain Receptor 1/genetics , Genes, Tumor Suppressor , MicroRNAs/metabolism , Mouth Neoplasms/genetics , 3' Untranslated Regions , Aged , Ankyrins/chemistry , Ankyrins/genetics , Apoptosis/genetics , Arecoline/pharmacology , Carcinoma, Squamous Cell/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , DNA (Cytosine-5-)-Methyltransferases/metabolism , DNA Methylation/genetics , Discoidin Domain Receptor 1/metabolism , HEK293 Cells , Humans , MicroRNAs/genetics , Mouth Neoplasms/metabolism , Promoter Regions, Genetic , DNA Methyltransferase 3B
19.
Cells ; 8(4)2019 03 30.
Article in English | MEDLINE | ID: mdl-30935014

ABSTRACT

Patients receiving docetaxel developed a drug resistance within a few months. We generated docetaxel-resistant PC/DX25 and DU/DX50 CRPC cells from PC-3 and DU-145 PCa cells, respectively. We investigated the mechanism behind why PC/DX25 and DU/DX50 cells exhibited higher migration and invasion ability. Transwell assays were used to measure the migration and invasion of PCa cell. Fluorescence activated cell sorter (FACS) analysis was used to determine the population of cancer stem cell (CSC)-like cell. Micro-Western Array (MWA) was used to study the changes of the protein profile. FACS analysis revealed that PC/DX25 cells and DU/DX50 cells contain higher CD44+ population. MWA and Western blotting assay revealed that protein expression of CD44, YAP, CYR61, CTGF, phospho-ERK1/2 T202/Y204, ERK and vimentin was elevated in PC/DX25 cells. Knockdown of CD44 or YAP suppressed migration and invasion of PC/DX25 and DU/DX50 cells. Knockdown of CD44 decreased expression of YAP, CTGF and CYR61 but increased phosphorylation of S127 on YAP. CD44 knockdown also suppressed protein level of AKT, phospho-AKT T308, phospho-ERK1/2 T202/Y204 and vimentin. CD44 promotes migration and invasion of docetaxel-resistant PCa cells probably via induction of Hippo-Yap signaling pathway and CD44/YAP pathway may be a therapeutic target for docetaxel-resistant PCa.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Cell Movement , Docetaxel/therapeutic use , Hyaluronan Receptors/metabolism , Phosphoproteins/metabolism , Prostatic Neoplasms/metabolism , Prostatic Neoplasms/pathology , Protein Serine-Threonine Kinases/metabolism , Signal Transduction , Cell Line, Tumor , Cell Movement/drug effects , Drug Resistance, Neoplasm/drug effects , Hippo Signaling Pathway , Humans , Male , Neoplasm Invasiveness , Neoplasm Proteins/metabolism , Prostatic Neoplasms/drug therapy , Transcription Factors , Wound Healing/drug effects , YAP-Signaling Proteins
20.
Carcinogenesis ; 40(3): 461-473, 2019 05 14.
Article in English | MEDLINE | ID: mdl-30418535

ABSTRACT

Dysregulation of the enzymes involved in the pentose phosphate pathway (PPP) is known to promote tumorigenesis. Our recent study demonstrated that ribose-5-phosphate isomerase (RPIA), a key regulator of the PPP, regulates hepatoma cell proliferation and colony formation. Our studies in zebrafish reveal that RPIA-mediated hepatocarcinogenesis requires extracellular signal-regulated kinase (ERK) and ß-catenin signaling. To further investigate RPIA-mediated hepatocarcinogenesis, two independent lines of transgenic zebrafish expressing human RPIA in the liver were generated. These studies reveal that RPIA overexpression triggers lipogenic factor/enzyme expression, steatosis, fibrosis and proliferation of the liver. In addition, the severity of fibrosis and the extent of proliferation are positively correlated with RPIA expression levels. Furthermore, RPIA-mediated induction of hepatocellular carcinoma (HCC) requires the ERK and ß-catenin signaling pathway but is not dependent upon transaldolase levels. Our study presents a mechanism for RPIA-mediated hepatocarcinogenesis and suggests that RPIA represents a valuable therapeutic target for the treatment of HCC.


Subject(s)
Aldose-Ketose Isomerases/metabolism , Extracellular Signal-Regulated MAP Kinases/metabolism , Liver Neoplasms, Experimental/pathology , beta Catenin/metabolism , Animals , Animals, Genetically Modified , Cell Line, Tumor , Disease Progression , Liver Neoplasms, Experimental/enzymology , Liver Neoplasms, Experimental/metabolism , Zebrafish/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...