Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Analyst ; 138(11): 3271-9, 2013 Jun 07.
Article in English | MEDLINE | ID: mdl-23612246

ABSTRACT

In this study, we employed a novel on-line method, push/pull perfusion hollow-fiber liquid-phase microextraction (PPP-HF-LPME), to extract 4-tert-butylphenol, 2,4-di-tert-butylphenol, 4-n-nonylphenol, and 4-n-octylphenol from river and tap water samples; we then separated and quantified the extracted analytes through high-performance liquid chromatography (HPLC). Using this approach, we overcame the problem of fluid loss across the porous HF membrane to the donor phase, permitting on-line coupling of HF-LPME to HPLC. In our PPP-HF-LPME system, we used a push/pull syringe pump as the driving source to perfuse the acceptor phase, while employing a heating mantle and an ultrasonic probe to accelerate mass transfer. We optimized the experimental conditions such as the nature of the HF supported intermediary phase and the acceptor phase, the composition of the donor and acceptor phases, the sample temperature, and the sonication conditions. Our proposed method provided relative standard deviations of 3.1-6.2%, coefficients of determination (r(2)) of 0.9989-0.9998, and limits of detection of 0.03-0.2 ng mL(-1) for the analytes under the optimized conditions. When we applied this method to analyses of river and tap water samples, our results confirmed that this microextraction technique allows reliable monitoring of alkylphenols in water samples.


Subject(s)
Liquid Phase Microextraction/methods , Online Systems , Phenols/analysis , Phenols/isolation & purification , Water/chemistry , Chromatography, High Pressure Liquid , Liquid Phase Microextraction/instrumentation , Reproducibility of Results , Solvents/chemistry , Syringes , Temperature
2.
J Chromatogr A ; 1271(1): 41-9, 2013 Jan 04.
Article in English | MEDLINE | ID: mdl-23237709

ABSTRACT

In this study we on-line coupled hollow fiber liquid-liquid-liquid microextraction (HF-LLLME), assisted by an ultrasonic probe, with high-performance liquid chromatography (HPLC). In this approach, the target analytes - 2-chlorophenol (2-CP), 3-chlorophenol (3-CP), 2,6-dichlorophenol (2,6-DCP), and 3,4-dichlorophenol (3,4-DCP) - were extracted into a hollow fiber (HF) supported liquid membrane (SLM) and then back-extracted into the acceptor solution in the lumen of the HF. Next, the acceptor solution was withdrawn on-line into the HPLC sample loop connected to the HF and then injected directly into the HPLC system for analysis. We found that the chlorophenols (CPs) could diffuse quickly through two sequential extraction interfaces - the donor phase - SLM and the SLM - acceptor phase - under the assistance of an ultrasonic probe. Ultrasonication provided effective mixing of the extracted boundary layers with the bulk of the sample and it increased the driving forces for mass transfer, thereby enhancing the extraction kinetics and leading to rapid enrichment of the target analytes. We studied the effects of various parameters on the extraction efficiency, viz. the nature of the SLM and acceptor phase, the compositions of the donor and acceptor phases, the fiber length, the stirring rate, the ion strength, the sample temperature, the sonication conditions, and the perfusion flow rate. This on-line extraction method exhibited linearity (r(2)≥0.998), sensitivity (limits of detection: 0.03-0.05 µg L(-1)), and precision (RSD%≤4.8), allowing the sensitive, simple, and rapid determination of CPs in aqueous solutions and water samples with a sampling time of just 2 min.


Subject(s)
Chlorophenols/analysis , Chromatography, High Pressure Liquid/methods , Liquid Phase Microextraction/methods , Water Pollutants, Chemical/analysis , Reproducibility of Results , Rivers/chemistry , Sensitivity and Specificity , Sonication , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...