Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 11 de 11
Filter
Add more filters










Publication year range
1.
Polymers (Basel) ; 14(16)2022 Aug 18.
Article in English | MEDLINE | ID: mdl-36015625

ABSTRACT

Polypropylene (PP), a promising engineering thermoplastic, possesses the advantages of light weight, chemical resistance, and flexible processability, yet preserving insulative properties. For the rising demand for cost-effective electronic devices and system hardware protections, these applications require the proper conductive properties of PP, which can be easily modified. This study investigates the thermal and electrical properties of isotactic polypropylene/copper nanowires (i-PP/CuNWs). The CuNWs were harvested by chemical reduction of CuCl2 using a reducing agent of glucose, capping agent of hexadecylamine (HDA), and surfactant of PEG-7 glyceryl cocoate. Their morphology, light absorbance, and solution homogeneity were investigated by SEM, UV-visible spectrophotometry, and optical microscopy. The averaged diameters and the length of the CuNWs were 66.4 ± 16.1 nm and 32.4 ± 11.8 µm, respectively. The estimated aspect ratio (L/D, length-to-diameter) was 488 ± 215 which can be recognized as 1-D nanomaterials. Conductive i-PP/CuNWs composites were prepared by solution blending using p-xylene, then melt blending. The thermal analysis and morphology of CuNWs were characterized by DSC, polarized optical microscopy (POM), and SEM, respectively. The melting temperature decreased, but the crystallization temperature increasing of i-PP/CuNWs composites were observed when increasing the content of CuNWs by the melt blending process. The WAXD data reveal the coexistence of Cu2O and Cu in melt-blended i-PP/CuNWs composites. The fit of the electrical volume resistivity (ρ) with the modified power law equation: ρ = ρo (V - Vc)-t based on the percolation theory was used to find the percolation concentration. A low percolation threshold value of 0.237 vol% and high critical exponent t of 2.96 for i-PP/CuNWs composites were obtained. The volume resistivity for i-PP/CuNWs composite was 1.57 × 107 Ω-cm at 1 vol% of CuNWs as a potential candidate for future conductive materials.

2.
Polymers (Basel) ; 14(10)2022 May 11.
Article in English | MEDLINE | ID: mdl-35631835

ABSTRACT

Starch-based biodegradable foams with a high starch content are developed using industrial starch as the base material and supercritical CO2 as blowing or foaming agents. The superior cushioning properties of these foams can lead to competitiveness in the market. Despite this, a weak melting strength property of starch is not sufficient to hold the foaming agents within it. Due to the rapid diffusion of foaming gas into the environment, it is difficult for starch to maintain pore structure in starch foams. Therefore, producing starch foam by using supercritical CO2 foaming gas faces severe challenges. To overcome this, we have synthesized thermoplastic starch (TPS) by dispersing starch into water or glycerin. Consecutively, the TPS surface was modified by compatibilizer silane A (SA) to improve the dispersion with poly(butylene adipate-co-terephthalate) (PBAT) to become (TPS with SA)/PBAT composite foam. Furthermore, the foam-forming process was optimized by varying the ratios of TPS and PBAT under different forming temperatures of 85 °C to 105 °C, and two different pressures, 17 Mpa and 23 Mpa were studied in detail. The obtained results indicate that the SA surface modification on TPS can influence the great compatibility with PBAT blended foams (foam density: 0.16 g/cm3); whereas unmodified TPS and PBAT (foam density: 0.349 g/cm3) exhibit high foam density, rigid foam structure, and poor tensile properties. In addition, we have found that the 80% TPS/20% PBAT foam can be achieved with good flexible properties. Because of this flexibility, lightweight and environment-friendly nature, we have the opportunity to resolve the strong demands from the packing market.

3.
Polymers (Basel) ; 15(1)2022 Dec 28.
Article in English | MEDLINE | ID: mdl-36616479

ABSTRACT

Biodegradable foams are a potential substitute for most fossil-fuel-derived polymer foams currently used in the cushion furniture-making industry. Thermoplastic starch (TPS) and poly(butylene adipate-co-terephthalate) (PBAT) are biodegradable polymers, although their poor compatibility does not support the foam-forming process. In this study, we investigated the effect of polyethylene glycol (PEG) with or without silane A (SA) on the foam density, cell structure and tensile properties of TPS/PBAT blends. The challenges in foam forming were explored through various temperature and pressure values under supercritical carbon dioxide (CO2) conditions. The obtained experimental results indicate that PEG and SA act as a plasticizer and compatibilizer, respectively. The 50% (TPS with SA + PEG)/50% PBAT blends generally produce foams that have a lower foam density and better cell structure than those of 50% (TPS with PEG)/50% PBAT blends. The tensile property of each 50% (TPS with SA + PEG)/50% PBAT foam is generally better than that of each 50% (TPS with PEG)/50% PBAT foam.

4.
Int J Nanomedicine ; 16: 3789-3802, 2021.
Article in English | MEDLINE | ID: mdl-34103915

ABSTRACT

INTRODUCTION: It has been reported that low-molecular-weight hyaluronic acid (LMWHA) exhibits a potentially beneficial effect on cancer therapy through targeting of CD44 receptors on tumor cell surfaces. However, its applicability towards tumor detection is still unclear. In this regard, LMWHA-conjugated iron (Fe3O4) nanoparticles (LMWHA-IONPs) were prepared in order to evaluate its application for enhancing the T2* weighted MRI imaging sensitivity for tumor detection. METHODS: LMWHA and Fe3O4 NPs were produced using γ-ray irradiation and chemical co-precipitation methods, respectively. First, LMWHA-conjugated FITC was prepared to confirm the ability of LMWHA to target U87MG cells using fluorescence microscopy. The hydrodynamic size distribution and dispersion of the IONPs and prepared LMWHA-IONPs were analyzed using dynamic light scattering (DLS). In addition, cell viability assays were performed to examine the biocompatibility of LMWHA and LMWHA-IONPs toward U87MG human glioblastoma and NIH3T3 fibroblast cell lines. The ability of LMWHA-IONPs to target tumor cells was confirmed by detecting iron (Fe) ion content using the thiocyanate method. Finally, time-of-flight secondary ion mass spectrometry (TOF-SIMS) imaging and in vitro magnetic resonance imaging (MRI) were performed to confirm the contrast enhancement effect of LMWHA-IONPs. RESULTS: Florescence analysis results showed that LMWHA-FITC successfully targeted the surfaces of both tested cell types. The ability of LMWHA to target U87MG cells was higher than for NIH3T3 cells. Cell viability experiments showed that the fabricated LMWHA-IONPs possessed good biocompatibility for both cell lines. After co-culturing test cells with the LMWHA-IONPs, detected Fe ion content in the U87MG cells was much higher than that of the NIH3T3 cells in both thiocyanate assays and TOF-SIMs images. Finally, the addition of LMWHA-IONPs to the U87MG cells resulted in an obvious improvement in T2* weighted MR image contrast compared to control NIH3T3 cells. DISCUSSION: Overall, the present results suggest that LMWHA-IONPs fabricated in this study provide an effective MRI contrast agent for improving the diagnosis of early stage glioblastoma in MRI examinations.


Subject(s)
Gamma Rays , Glioblastoma/diagnostic imaging , Hyaluronic Acid/chemistry , Iron/chemistry , Magnetic Resonance Imaging , Metal Nanoparticles/chemistry , Animals , Cell Line, Tumor , Cell Proliferation , Cell Survival/drug effects , Glioblastoma/pathology , Humans , Hyaluronic Acid/ultrastructure , Metal Nanoparticles/ultrastructure , Mice , Molecular Weight , NIH 3T3 Cells , Oleic Acid/chemistry , Particle Size
5.
Polymers (Basel) ; 12(5)2020 May 11.
Article in English | MEDLINE | ID: mdl-32403369

ABSTRACT

Low-molecular-weight hyaluronic acid (LMWHA) was integrated with superparamagnetic Fe3O4 nanoparticles (Fe3O4 NPs). The size distribution, zeta potential, viscosity, thermogravimetric and paramagnetic properties of the LMWHA-Fe3O4 NPs were systematically examined. For cellular experiments, MCF7 breast cancer cell line was carried out. In addition, the cell targeting ability and characteristics of the LMWHA-Fe3O4 NPs for MCF7 breast cancer cells were analyzed using the thiocyanate method and time-of-flight secondary ion mass spectrometry (TOF-SIMS). The experimental results showed that the LMWHA-Fe3O4 NPs were not only easily injectable due to their low viscosity, but also exhibited a significant superparamagnetic property. Furthermore, the in vitro assay results showed that the NPs had negligible cytotoxicity and exhibited a good cancer cell targeting ability. Overall, the results therefore suggest that the LMWHA-Fe3O4 NPs have considerable potential as an injectable agent for enhanced magnetic resonance imaging (MRI) and/or hyperthermia treatment in breast cancer therapy.

6.
Polymers (Basel) ; 10(7)2018 Jul 22.
Article in English | MEDLINE | ID: mdl-30960729

ABSTRACT

Fe3O4 nanoparticles were loaded into poly-l-lactide (PLLA) with concentrations of 2% and 5%, respectively, using an electrospinning method. In vivo animal experiments were then performed to evaluate the potential of the Fe3O4/PLLA nanofibrous material for bone tissue engineering applications. Bony defects with a diameter of 4 mm were prepared in rabbit tibias. Fe3O4/PLLA nanofibers were grafted into the drilled defects and histological examination and computed tomography (CT) image detection were performed after an eight-week healing period. The histological results showed that the artificial bony defects grafted with Fe3O4/PLLA nanofibers exhibited a visibly higher bone healing activity than those grafted with neat PLLA. In addition, the quantitative results from CT images revealed that the bony defects grafted with 2% and 5% Fe3O4/PLLA nanofibers, respectively, showed 1.9- and 2.3-fold increases in bone volume compared to the control blank sample. Overall, the results suggest that the Fe3O4/PLLA nanofibers fabricated in this study may serve as a useful biomaterial for future bone tissue engineering applications.

7.
Polymers (Basel) ; 9(6)2017 May 26.
Article in English | MEDLINE | ID: mdl-30970868

ABSTRACT

The aim of this study was to fabricate biodegradable poly-l-lactic acid (PLLA) bone screws containing iron oxide (Fe3O4) nanoparticles, which are radiopaque and 3D-printable. The PLLA composites were fabricated by loading 20%, 30%, and 40% Fe3O4 nanoparticles into the PLLA. The physical properties, including elastic modulus, thermal properties, and biocompatibility of the composites were tested. The 20% nano-Fe3O4/PLLA composite was used as the material for fabricating the 3D-printed bone screws. The mechanical performance of the nano-Fe3O4/PLLA bone screws was evaluated by anti-bending and anti-torque strength tests. The tissue response and radiopacity of the nano-Fe3O4/PLLA bone screws were assessed by histologic and CT imaging studies using an animal model. The addition of nano-Fe3O4 increased the crystallization of the PLLA composites. Furthermore, the 20% nano-Fe3O4/PLLA composite exhibited the highest thermal stability compared to the other Fe3O4 proportions. The 3D-printed bone screws using the 20% nano-Fe3O4/PLLA composite provided excellent local tissue response. In addition, the radiopacity of the 20% nano-Fe3O4/PLLA screw was significantly better compared with the neat PLLA screw.

8.
Int J Radiat Biol ; 91(2): 135-41, 2015 Feb.
Article in English | MEDLINE | ID: mdl-25179347

ABSTRACT

PURPOSE: Previous studies demonstrated that static magnetic fields (SMF) were effective in down-regulating the expression of lipopolysaccharide (LPS)-induced inflammatory cytokines. The aim of this study was to provide histological evidence of SMF attenuating LPS-induced multiple organ failure (MOF). MATERIALS AND METHODS: In this study, BALB/cByJNarl (5 weeks, weighing 20-25 g) mice were chosen as test subjects. The tested animals were challenged with 50 mg/kg LPS after they were exposed to a continuous SMF for 2 h. The survival rate and pathological changes in lungs, kidneys, and livers of the LPS- challenged mice were examined with and without SMF treatment. In addition, the effects of SMF exposure on body temperature control of the LPS-challenged mice were monitored. RESULTS: Our results showed that at 30 h the survival rate of LPS-challenged mice increased 3.6-fold (p < 0.05). In addition, 6 h after LPS injection, the average body temperature of SMF-exposed mice was 1.07°C lower than that of unexposed animals. Tissue biopsies demonstrated that SMF exposure reduced damage to the lungs, livers, and kidneys in the LPS-challenged mice. CONCLUSIONS: SMF show potential as a viable prophylactic alternative for controlling LPS-induced MOF.


Subject(s)
Lipopolysaccharides/adverse effects , Magnetic Fields , Multiple Organ Failure/pathology , Multiple Organ Failure/therapy , Animals , Kidney Cortex/drug effects , Kidney Cortex/pathology , Liver/drug effects , Liver/pathology , Male , Mice , Mice, Inbred BALB C , Multiple Organ Failure/chemically induced
9.
Molecules ; 12(4): 821-31, 2007 Apr 23.
Article in English | MEDLINE | ID: mdl-17851434

ABSTRACT

Ni(II) complexes of N,N'-di(pyrazin-2-yl)pyridine-2,6-diamine (H2dpzpda) with different anions were synthesized and their structures were determined by X-ray diffraction. Hydrogen bonds between the amino groups and anions assembled the mononuclear molecules into different architectures. The perchlorate complex had a 1-D chain structure, whereas switching the anion from perchlorate to nitrate resulted in a corresponding change of the supramolecular structure from 1-D to 3-D. When the nitrate complex packed with the co-crystallized water, a double chain structure was formed through hydrogen bonding. The magnetic studies revealed values of g = 2.14 and D = 3.11 cm(-1) for [Ni(H2dpzpda)2](ClO4)2 (1) and g = 2.18 and D = 2.19 cm(-1) for [Ni(H2dpzpda)2](NO3)2 (2), respectively.


Subject(s)
Chemistry/methods , Diamines/chemistry , Hydrogen Bonding , Nickel/chemistry , Polymers/chemistry , Pyridines/chemistry , Crystallization , Crystallography, X-Ray , Ligands , Metals/chemistry , Models, Chemical , Models, Molecular , Molecular Conformation , Solvents/chemistry , Temperature
10.
Acta Crystallogr C ; 63(Pt 5): m216-9, 2007 May.
Article in English | MEDLINE | ID: mdl-17478904

ABSTRACT

N,N'-Bis(4-pyridylmethyl)oxalamide, C(14)H(14)N(4)O(2), exists as a dimer which is extended into a two-dimensional network with other dimers through pyridine-amide hydrogen bonds. The crystal structure of the title coordination polymer, {[CoCl2(C(14)H(14)N(4)O(2))].0.5H2O}n, features a one-dimensional zigzag chain, in which the cobalt ion sits at a twofold symmetry position and adopts a tetrahedral geometry, and the bridging ligand lies on an inversion center and connects to Co(II) ions in a bis-monodentate mode. Furthermore, two interwoven chains create a cavity of ca 8.6 x 8.6 A, which produces a three-dimensional channel. Water molecules are held in the channel by hydrogen bonds.

11.
Molecules ; 11(8): 589-96, 2006 Aug 10.
Article in English | MEDLINE | ID: mdl-17971731

ABSTRACT

Two novel coordination polymers with 3D metal-organic frameworks (MOFs) have been synthesized by reacting 1,4-bis(3-pyridyl)-2,3-diazo-1,3-butadiene (L) with zinc dichloride. Both compounds have the same repeating unit consisting of a distorted tetrahedral Zn(II) center coordinated by two chlorides and two pyridyl nitrogen atoms of two bridging bismonodentate L ligands, however, different structural conformations have been found, one forming a helical chain and the other producing a square-wave chain. The intermolecular C-H...Cl hydrogen bonds in 1 and 2 play important roles in the formation of three-dimensional coordination polymers. Compound 1 crystallized in an orthorhombic space group Pna21 with a = 7.9652(3), b = 21.4716(7), c = 8.2491(3)A, V = 1410.81(9) A 3 and Z = 4. Compound 2 crystallized in a monoclinic space group P21/n with a = 9.1752(3), b = 14.5976(4), c = 10.3666(3) A , beta = 98.231(2) degrees , V = 1374.16(7) A 3 and Z = 4.


Subject(s)
Organometallic Compounds/chemistry , Organometallic Compounds/chemical synthesis , Polymers/chemistry , Polymers/chemical synthesis , Hydrogen Bonding , Models, Molecular , Solvents , Temperature
SELECTION OF CITATIONS
SEARCH DETAIL
...