Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Mol Sci ; 22(19)2021 Oct 02.
Article in English | MEDLINE | ID: mdl-34639050

ABSTRACT

Porous silicon is of current interest for cardiac tissue engineering applications. While porous silicon is considered to be a biocompatible material, it is important to assess whether post-etching surface treatments can further improve biocompatibility and perhaps modify cellular behavior in desirable ways. In this work, porous silicon was formed by electrochemically etching with hydrofluoric acid, and was then treated with oxygen plasma or supercritical carbon dioxide (scCO2). These processes yielded porous silicon with a thickness of around 4 µm. The different post-etch treatments gave surfaces that differed greatly in hydrophilicity: oxygen plasma-treated porous silicon had a highly hydrophilic surface, while scCO2 gave a more hydrophobic surface. The viabilities of H9c2 cardiomyocytes grown on etched surfaces with and without these two post-etch treatments was examined; viability was found to be highest on porous silicon treated with scCO2. Most significantly, the expression of some key genes in the angiogenesis pathway was strongly elevated in cells grown on the scCO2-treated porous silicon, compared to cells grown on the untreated or plasma-treated porous silicon. In addition, the expression of several apoptosis genes were suppressed, relative to the untreated or plasma-treated surfaces.


Subject(s)
Biocompatible Materials/chemistry , Carbon Dioxide/chemistry , Myocytes, Cardiac , Silicon/chemistry , Bioengineering , Cell Survival , Porosity , Spectrum Analysis , Surface Properties
2.
IEEE J Transl Eng Health Med ; 1: 2700108, 2013.
Article in English | MEDLINE | ID: mdl-27170853

ABSTRACT

Real-time monitoring of cardiac health is helpful for patients with cardiovascular disease. Many telemedicine systems based on ubiquitous computing and communication techniques have been proposed for monitoring the user's electrocardiogram (ECG) anywhere and anytime. Usually, wet electrodes are used in these telemedicine systems. However, wet electrodes require conduction gels and skin preparation that can be inconvenient and uncomfortable for users. In order to overcome this issue, a new non-contact electrode circuit was proposed and applied in developing a mobile electrocardiogram monitoring system. The proposed non-contact electrode can measure bio-potentials across thin clothing, allowing it to be embedded in a user's normal clothing to monitor ECG in daily life. We attempted to simplify the design of these non-contact electrodes to reduce power consumption while continuing to provide good signal quality. The electrical specifications and the performance of monitoring arrhythmia in clinical settings were also validated to investigate the reliability of the proposed design. Experimental results show that the proposed non-contact electrode provides good signal quality for measuring ECG across thin clothes.

SELECTION OF CITATIONS
SEARCH DETAIL
...