Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 5.324
Filter
1.
Nat Commun ; 15(1): 5524, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38951485

ABSTRACT

The three-dimensional genome structure organized by CTCF is required for development. Clinically identified mutations in CTCF have been linked to adverse developmental outcomes. Nevertheless, the underlying mechanism remains elusive. In this investigation, we explore the regulatory roles of a clinically relevant R567W point mutation, located within the 11th zinc finger of CTCF, by introducing this mutation into both murine models and human embryonic stem cell-derived cortical organoid models. Mice with homozygous CTCFR567W mutation exhibit growth impediments, resulting in postnatal mortality, and deviations in brain, heart, and lung development at the pathological and single-cell transcriptome levels. This mutation induces premature stem-like cell exhaustion, accelerates the maturation of GABAergic neurons, and disrupts neurodevelopmental and synaptic pathways. Additionally, it specifically hinders CTCF binding to peripheral motifs upstream to the core consensus site, causing alterations in local chromatin structure and gene expression, particularly at the clustered protocadherin locus. Comparative analysis using human cortical organoids mirrors the consequences induced by this mutation. In summary, this study elucidates the influence of the CTCFR567W mutation on human neurodevelopmental disorders, paving the way for potential therapeutic interventions.


Subject(s)
CCCTC-Binding Factor , Neurodevelopmental Disorders , Organoids , CCCTC-Binding Factor/metabolism , CCCTC-Binding Factor/genetics , Humans , Animals , Mice , Neurodevelopmental Disorders/genetics , Organoids/metabolism , Mutation , GABAergic Neurons/metabolism , GABAergic Neurons/pathology , Male , Chromatin/metabolism , Chromatin/genetics , Female , Brain/metabolism , Brain/pathology , Point Mutation , Human Embryonic Stem Cells/metabolism
2.
Cell Host Microbe ; 2024 Jun 25.
Article in English | MEDLINE | ID: mdl-38959900

ABSTRACT

The gut microbiota and diet-induced changes in microbiome composition have been linked to various liver diseases, although the specific microbes and mechanisms remain understudied. Alcohol-related liver disease (ALD) is one such disease with limited therapeutic options due to its complex pathogenesis. We demonstrate that a diet rich in soluble dietary fiber increases the abundance of Bacteroides acidifaciens (B. acidifaciens) and alleviates alcohol-induced liver injury in mice. B. acidifaciens treatment alone ameliorates liver injury through a bile salt hydrolase that generates unconjugated bile acids to activate intestinal farnesoid X receptor (FXR) and its downstream target, fibroblast growth factor-15 (FGF15). FGF15 promotes hepatocyte expression of ornithine aminotransferase (OAT), which facilitates the metabolism of accumulated ornithine in the liver into glutamate, thereby providing sufficient glutamate for ammonia detoxification via the glutamine synthesis pathway. Collectively, these findings uncover a potential therapeutic strategy for ALD involving dietary fiber supplementation and B. acidifaciens.

3.
Int Immunopharmacol ; 138: 112554, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38968861

ABSTRACT

BACKGROUND: Human placental mesenchymal stromal cells (hPMSCs) are known to limit graft-versus-host disease (GVHD). CD8+CD122+PD-1+Tregs have been shown to improve the survival of GVHD mice. However, the regulatory roles of hPMSCs in this subgroup remain unclear. Here, the regulatory mechanism of hPMSCs in reducing liver fibrosis in GVHD mice by promoting CD8+CD122+PD-1+Tregs formation and controlling the balance of IL-6 and IL-10 were explored. METHODS: A GVHD mouse model was constructed using C57BL/6J and BALB/c mice and treated with hPMSCs. LX-2 cells were explored to study the effects of IL-6 and IL-10 on the activation of hepatic stellate cells (HSCs). The percentage of CD8+CD122+PD-1+Tregs and IL-10 secretion were determined using FCM. Changes in hepatic tissue were analysed by HE, Masson, multiple immunohistochemical staining and ELISA, and the effects of IL-6 and IL-10 on LX-2 cells were detected using western blotting. RESULTS: hPMSCs enhanced CD8+CD122+PD-1+Treg formation via the CD73/Foxo1 and promoted IL-10, p53, and MMP-8 levels, but inhibited IL-6, HLF, α-SMA, Col1α1, and Fn levels in the liver of GVHD mice through CD73. Positive and negative correlations of IL-6 and IL-10 between HLF were found in liver tissue, respectively. IL-6 upregulated HLF, α-SMA, and Col1α1 expression via JAK2/STAT3 pathway, whereas IL-10 upregulated p53 and inhibited α-SMA and Col1α1 expression in LX-2 cells by activating STAT3. CONCLUSIONS: hPMSCs promoted CD8+CD122+PD-1+Treg formation and IL-10 secretion but inhibited HSCs activation and α-SMA and Col1α1 expression by CD73, thus controlling the balance of IL-6 and IL-10, and alleviating liver injury in GVHD mice.

4.
Physiol Plant ; 176(4): e14416, 2024.
Article in English | MEDLINE | ID: mdl-38952344

ABSTRACT

Under changing climatic conditions, plants are simultaneously facing conflicting stresses in nature. Plants can sense different stresses, induce systematic ROS signals, and regulate transcriptomic, hormonal, and stomatal responses. We performed transcriptome analysis to reveal the integrative stress response regulatory mechanism underlying heavy metal stress alone or in combination with heat and drought conditions in pitaya (dragon fruit). A total of 70 genes were identified from 31,130 transcripts with conserved differential expression. Furthermore, weighted gene co-expression network analysis (WGCNA) identified trait-associated modules. By integrating information from three modules and protein-protein interaction (PPI) networks, we identified 10 interconnected genes associated with the multifaceted defense mechanism employed by pitaya against co-occurring stresses. To further confirm the reliability of the results, we performed a comparative analysis of 350 genes identified by three trait modules and 70 conserved genes exhibiting their dynamic expression under all treatments. Differential expression pattern of genes and comparative analysis, have proven instrumental in identifying ten putative structural genes. These ten genes were annotated as PLAT/LH2, CAT, MLP, HSP, PB1, PLA, NAC, HMA, and CER1 transcription factors involved in antioxidant activity, defense response, MAPK signaling, detoxification of metals and regulating the crosstalk between the complex pathways. Predictive analysis of putative candidate genes, potentially governing single, double, and multifactorial stress response, by several signaling systems and molecular patterns. These findings represent a valuable resource for pitaya breeding programs, offering the potential to develop resilient "super pitaya" plants.


Subject(s)
Fruit , Gene Expression Regulation, Plant , Gene Regulatory Networks , Gene Expression Regulation, Plant/drug effects , Gene Regulatory Networks/drug effects , Fruit/genetics , Fruit/drug effects , Fruit/metabolism , Vanadium/pharmacology , Stress, Physiological/genetics , Caragana/genetics , Caragana/physiology , Plant Proteins/genetics , Plant Proteins/metabolism , Protein Interaction Maps , Gene Expression Profiling , Droughts , Transcriptome/genetics , Transcriptome/drug effects , Cactaceae
5.
PeerJ ; 12: e17656, 2024.
Article in English | MEDLINE | ID: mdl-38948216

ABSTRACT

Fusarium crown rot (FCR), caused by Fusarium spp., is a devastating disease in wheat growing areas. Previous studies have shown that FCR is caused by co-infection of F. graminearum, F. pseudograminearum, F. proliferatum and F. verticillioides in Hubei Province, China. In this study, a method was developed to simultaneously detected DNAs of F. graminearum, F. pseudograminearum, F. proliferatum and F. verticillioides that can efficiently differentiate them. Whole genome sequence comparison of these four Fusarium spp. was performed and a 20 bp sequence was designed as an universal upstream primer. Specific downstream primers of each pathogen was also designed, which resulted in a 206, 482, 680, and 963 bp amplicon for each pathogen, respectively. Multiplex PCR specifically identified F. graminearum, F. pseudograminearum, F. proliferatum and F. verticillioides but not from other 46 pathogens, and the detection limit of target pathogens is about 100 pg/µl. Moreover, we accurately determined the FCR pathogen species in wheat samples using the optimized multiplex PCR method. These results demonstrate that the multiplex PCR method established in this study can efficiently and rapidly identify F. graminearum, F. pseudograminearum, F. proliferatum, and F. verticillioides, which should provide technical support for timely and targeted prevention and control of FCR.


Subject(s)
Fusarium , Multiplex Polymerase Chain Reaction , Plant Diseases , Triticum , Fusarium/genetics , Fusarium/isolation & purification , Triticum/microbiology , Plant Diseases/microbiology , Multiplex Polymerase Chain Reaction/methods , China , DNA, Fungal/genetics
6.
Cancer Innov ; 3(4): e127, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38948249

ABSTRACT

Background: Clinical studies have shown that atherosclerotic cardiovascular disease and cancer often co-exist in the same individual. The present study aimed to investigate the role of high-fat-diet (HFD)-induced obesity in the coexistence of the two diseases and the underlying mechanism in apolipoprotein E-knockout (ApoE-/-) mice. Methods: Male ApoE-/- mice were fed with a HFD or a normal diet (ND) for 15 weeks. On the first day of Week 13, the mice were inoculated subcutaneously in the right axilla with Lewis lung cancer cells. At Weeks 12 and 15, serum lectin-like oxidized low-density lipoprotein receptor-1 (LOX-1) and vascular endothelial growth factor levels were measured by enzyme-linked immunosorbent assay, and blood monocytes and macrophages were measured by fluorescence-activated cell sorting. At Week 15, the volume and weight of the local subcutaneous lung cancer and metastatic lung cancer and the amount of aortic atherosclerosis were measured. Results: At Week 15, compared with mice in the ND group, those in the HFD group had a larger volume of local subcutaneous cancer (p = 0.0004), heavier tumors (p = 0.0235), more metastatic cancer in the lungs (p < 0.0001), a larger area of lung involved in metastatic cancer (p = 0.0031), and larger areas of atherosclerosis in the aorta (p < 0.0001). At Week 12, serum LOX-1, serum vascular endothelial growth factor, and proportions of blood monocytes and macrophages were significantly higher in the HFD group than those in the ND group (p = 0.0002, p = 0.0029, p = 0.0480, and p = 0.0106, respectively); this trend persisted until Week 15 (p = 0.0014, p = 0.0012, p = 0.0001, and p = 0.0204). Conclusions: In this study, HFD-induced obesity could simultaneously promote progression of lung cancer and atherosclerosis in the same mouse. HFD-induced upregulation of LOX-1 may play an important role in the simultaneous progression of these two conditions via the inflammatory response and VEGF.

7.
ACS Appl Mater Interfaces ; 16(26): 33917-33927, 2024 Jul 03.
Article in English | MEDLINE | ID: mdl-38961575

ABSTRACT

Despite the remarkable progress of perovskite solar cells (PSCs), the substantial inherent defects within perovskites restrict the achievement of higher efficiency and better long-term stability. Herein, we introduced a novel multifunctional imidazole analogue, namely, 1-benzyl-3-methylimidazolium bromide (BzMIMBr), into perovskite precursors to reduce bulk defects and inhibit ion migration in inverted PSCs. The electron-rich environment of -N- in the BzMIMBr structure, which is attributed to the electron-rich adjacent benzene ring-conjugated structure, effectively passivates the uncoordinated Pb2+ cations. Moreover, the interaction between the BzMIMBr additive and perovskite can effectively hinder the deprotonation of formamidinium iodide/methylammonium iodide (FAI/MAI), extending the crystallization time and improving the quality of the perovskite precursors and films. This interaction also effectively inhibits ion migration to subsequent deposited films, leading to a noteworthy decrease in trap states. Various characterization studies show that the BzMIMBr-doped films exhibit superior film morphology and surface uniformity and reduced nonradiative carrier recombination, consequently enhancing crystallinity by reducing bulk/surface defects. The PSCs fabricated on the BzMIMBr-doped perovskite thin film exhibit a power conversion efficiency of 23.37%, surpassing that of the pristine perovskite device (20.71%). Additionally, the added BzMIMBr substantially increased the hydrophobicity of perovskite, as unencapsulated devices still retained 93% of the initial efficiency after 1800 h of exposure to air (45% relative humidity).

8.
J Hazard Mater ; 476: 135103, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38972203

ABSTRACT

An earlier study found that respiratory cadmium chloride (CdCl2) exposure caused COPD-like lung injury. This study aimed to explore whether mitochondrial dysfunction-mediated alveolar epithelial senescence is involved in CdCl2-induced COPD-like lung injury. Adult C57BL/6 mice were exposed to CdCl2 (10 mg/L) aerosol for six months. Beta-galactosidase-positive cells, p21 and p16 were increased in CdCl2-exposed mouse lungs. The in vitro experiments showed that γ-H2AX was elevated in CdCl2-exposed alveolar epithelial cells. The cGAS-STING pathway was activated in CdCl2-exposed alveolar epithelial cells and mouse lungs. Cxcl1, Cxcl9, Il-10, Il-1ß and Mmp2, several senescence-associated secretory phenotypes (SASP), were upregulated in CdCl2-exposed alveolar epithelial cells. Mechanistically, CdCl2 exposure caused SIRT3 reduction and mitochondrial dysfunction in mouse lungs and alveolar epithelial cells. The in vitro experiment found that Sirt3 overexpression attenuated CdCl2-induced alveolar epithelial senescence and SASP. The in vivo experiments showed that Sirt3 gene knockout exacerbated CdCl2-induced alveolar epithelial senescence, alveolar structure damage, airway inflammation and pulmonary function decline. NMN, an NAD+ precursor, attenuated CdCl2-induced alveolar epithelial senescence and SASP in mouse lungs. Moreover, NMN supplementation prevented CdCl2-induced COPD-like alveolar structure damage, epithelial-mesenchymal transition and pulmonary function decline. These results suggest that mitochondrial dysfunction-associated alveolar epithelial senescence is involved in CdCl2-induced COPD-like lung injury.

9.
Biomater Sci ; 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38976288

ABSTRACT

Lipids have demonstrated tremendous promise for mRNA delivery, as evidenced by the success of Covid-19 mRNA vaccines. However, existing lipids are mostly used as delivery vehicles and lack the ability to monitor and further modulate the target cells. Here, for the first time, we report a class of unnatural lipids (azido-DOTAP) that can efficiently deliver mRNAs into cells and meanwhile metabolically label cells with unique chemical tags (e.g., azido groups). The azido tags expressed on the cell membrane enable the monitoring of transfected cells, and can mediate subsequent conjugation of cargos via efficient click chemistry for further modulation of transfected cells. We further demonstrate that the dual-functional unnatural lipid is applicable to different types of cells including dendritic cells, the prominent type of antigen presenting cells, potentially opening a new avenue to developing enhanced mRNA vaccines.

10.
Wideochir Inne Tech Maloinwazyjne ; 19(1): 42-51, 2024 Mar.
Article in English | MEDLINE | ID: mdl-38974761

ABSTRACT

Introduction: The dissection of the preperitoneal space is performed using a monopolar instrument to prevent bleeding in laparoscopic transabdominal preperitoneal hernia repair (TAPP). It may also cause energy injuries and nerve damage. Aim: To assess the effectiveness and safety of dissection of the preperitoneal space without electrocoagulation (DPSWE) in TAPP throughout the process. Material and methods: A retrospective analysis of data of 134 patients was made. The electrocoagulation group (EG) relied on monopolar instruments. In the non-electrocoagulation group (NEG) mainly scissors were used without electrocoagulation. The patients were followed for up for 3 months. Intraoperative and postoperative conditions and other complications were observed. Results: The VAS scores in the NEG were lower than those in the EG (p < 0.05). The operation time in the NEG was shorter than that in the EG (p < 0.05). Hospitalization expenses, scrotal seroma formation, and rupture of hernia sac in the NEG were lower than those in the EG (p < 0.05). The intraoperative bleeding volume above 20 ml in the NEG was higher than that in the EG. There was no significant difference in the incidence of postoperative bleeding, vas deferens injury, intestinal injury, surgical site infection, length of hospital stay, urinary retention and hernia recurrence in the NEG and the EG (p > 0.05). There was no significant difference in the incidence of surgical site infections (SSIs) in the NEG and the EG. Conclusions: DPSWE is effective and safe. DPSWE may reduce postoperative pain and have no significant increase in postoperative bleeding.

11.
Adv Sci (Weinh) ; : e2309473, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38978348

ABSTRACT

Melatonin (N-acetyl-5-methoxytryptamine) is reported to improve mood disorders in perimenopausal women and gut microbiome composition is altered during menopausal period. The possible role of microbiome in the treatment effect of melatonin on menopausal depression remains unknown. Here, it is shown that melatonin treatment reverses the gut microbiota dysbiosis and depressive-like behaviors in ovariectomy (OVX) operated mice. This effect of melatonin is prevented by antibiotic cocktails (ABX) treatment. Transferring microbiota harvested from adolescent female mice to OVX-operated mice is sufficient to ameliorate depressive-like behaviors. Conversely, microbiota transplantation from OVX-operated mice or melatonin-treated OVX-operated mice to naïve recipient mice exhibits similar phenotypes to donors. The colonization of Alistipes Inops, which is abundant in OVX-operated mice, confers the recipient with depressive-like behaviors. Further investigation indicates that the expansion of Alistipes Inops induced by OVX leads to the degradation of intestinal tryptophan, which destroys systemic tryptophan availability. Melatonin supplementation restores systemic tryptophan metabolic disorders by suppressing the growth of Alistipes Inops, which ameliorates depressive-like behaviors. These results highlight the previously unrecognized role of Alistipes Inops in the modulation of OVX-induced behavioral disorders and suggest that the application of melatonin to inhibit Alistipes Inops may serve as a potential strategy for preventing menopausal depressive symptoms.

13.
Int J Med Sci ; 21(9): 1756-1768, 2024.
Article in English | MEDLINE | ID: mdl-39006838

ABSTRACT

There are more than 70 million people worldwide living with epilepsy, with most experiencing the onset of epilepsy in childhood. Despite the availability of more than 20 anti-seizure medications, approximately 30% of epilepsy patients continue to experience unsatisfactory treatment outcomes. This situation places a heavy burden on patients' families and society. Childhood epilepsy is a significant chronic neurological disease that is closely related to genetics. Col4a2, the gene encoding the α2 chain of type IV collagen, is known to be associated with multiple diseases due to missense mutations. The Col4a2 variant of collagen type IV is associated with various phenotypes, including prenatal and neonatal intracranial hemorrhage, porencephaly, porencephaly with cataracts, focal cortical dysplasia, schizencephaly, strokes in childhood and adolescence, and sporadic delayed hemorrhagic stroke. Although epilepsy is recognized as a clinical manifestation of porencephaly, the specific mechanism of Col4a2-related epileptic phenotypes remains unclear. A total of 8 patients aged 2 years and 2 months to 18 years who were diagnosed with Col4a2-related infantile epileptic spasm syndrome were analyzed. The seizure onset age ranged from 3 to 10 months. Initial EEG results revealed hypsarrhythmia or multiple and multifocal sharp waves, spike waves, sharp slow waves, or spike slow waves. Elevated levels of the cytokines IL-1ß (32.23±12.58 pg/ml) and IL-6 (45.12±16.03 pg/ml) were detected in the cerebrospinal fluid of these patients without any signs of infection. Following antiseizure treatment, decreased IL-1ß and IL-6 levels in the cerebrospinal fluid were noted when seizures were under control. Furthermore, we aimed to investigate the role of Col4a2 mutations in the development of epilepsy. Through the use of immunofluorescence assays, ELISA, and Western blotting, we examined astrocyte activity and the expression of inflammatory cytokines such as IL-1ß, IL-6, and TNF-α after overexpressing an unreported Col4a2 (c.1838G>T) mutant in CTX-TNA cells and primary astrocytes. We found that the levels of the inflammatory factors IL-1ß, IL-6, and TNF-α were increased in both CTX-TNA cells (ELISA: p = 0.0087, p<0.001, p<0.001, respectively) and primary astrocytes (ELISA: p = 0.0275, p<0.001, p<0.001, respectively). Additionally, we conducted a preliminary investigation of the role of the JAK/STAT pathway in Col4a2 mutation-associated epilepsy. Col4a2 mutation stimulated astrocyte activation, increasing iNOS, COX-2, IL-1ß, IL-6, and TNF-α levels in both CTX-TNA cells and primary astrocytes. This mutation also activated the JAK/STAT signaling pathway, leading to increased phosphorylation of JAK2 and STAT3. Treatment with the JAK/STAT inhibitor WP1066 effectively counteracted this effect in primary astrocytes and CTX-TNA cells. To date, the genes who mutations are known to cause developmental and epileptic encephalopathies (DEEs) are predominantly grouped into six subtypes according to function. Our study revealed that an unreported mutation site Col4a2Mut (c.1838G>T) of which can cause neuroinflammation, may be a type VII DEE-causing gene.


Subject(s)
Collagen Type IV , Spasms, Infantile , Humans , Male , Child , Female , Spasms, Infantile/genetics , Child, Preschool , Adolescent , Collagen Type IV/genetics , Infant , Neuroinflammatory Diseases/genetics , Neuroinflammatory Diseases/pathology , Mutation, Missense/genetics , Electroencephalography , Interleukin-1beta/genetics , Mutation , Interleukin-6/genetics , Interleukin-6/metabolism
14.
J Hazard Mater ; 476: 135159, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-39002485

ABSTRACT

The effects and underlying mechanisms of adolescent exposure to combined environmental hazards on cognitive function remain unclear. Here, using a combined exposure model, we found significant cognitive decline, hippocampal neuronal damage, and neuronal senescence in mice exposed to cadmium (Cd) and high-fat diet (HFD) during adolescence. Furthermore, we observed a significant downregulation of Sirtuin 6 (SIRT6) expression in the hippocampi of co-exposed mice. UBCS039, a specific SIRT6 activator, markedly reversed the above adverse effects. Further investigation revealed that co-exposure obviously reduced the levels of La ribonucleoprotein 7 (LARP7), disrupted the interaction between LARP7 and SIRT6, ultimately decreasing SIRT6 expression in mouse hippocampal neuronal cells. Overexpression of Larp7 reversed the combined exposure-induced SIRT6 decrease and senescence in mouse hippocampal neuronal cells. Additionally, the results showed notably elevated levels of Larp7 m6A and YTH domain family protein 2 (YTHDF2) in mouse hippocampal neuronal cells treated with the combined hazards. Ythdf2 short interfering RNA, RNA immunoprecipitation, and RNA stability assays further demonstrated that YTHDF2 mediated the degradation of Larp7 mRNA under combined exposure. Collectively, adolescent co-exposure to Cd and HFD causes hippocampal senescence and cognitive decline in mice by inhibiting LARP7-mediated SIRT6 expression in an m6A-dependent manner.

15.
BMC Med ; 22(1): 289, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38987783

ABSTRACT

BACKGROUND: Epigenetic clocks were known as promising biomarkers of aging, including original clocks trained by individual CpG sites and principal component (PC) clocks trained by PCs of CpG sites. The effects of genetic and environmental factors on epigenetic clocks are still unclear, especially for PC clocks. METHODS: We constructed univariate twin models in 477 same-sex twin pairs from the Chinese National Twin Registry (CNTR) to estimate the heritability of five epigenetic clocks (GrimAge, PhenoAge, DunedinPACE, PCGrimAge, and PCPhenoAge). Besides, we investigated the longitudinal changes of genetic and environmental influences on epigenetic clocks across 5 years in 134 same-sex twin pairs. RESULTS: Heritability of epigenetic clocks ranged from 0.45 to 0.70, and those for PC clocks were higher than those for original clocks. For five epigenetic clocks, the longitudinal stability was moderate to high and was largely due to genetic effects. The genetic correlations between baseline and follow-up epigenetic clocks were moderate to high. Special unique environmental factors emerged both at baseline and at follow-up. PC clocks showed higher longitudinal stability and unique environmental correlations than original clocks. CONCLUSIONS: For five epigenetic clocks, they have the potential to identify aging interventions. High longitudinal stability is mainly due to genetic factors, and changes of epigenetic clocks over time are primarily due to changes in unique environmental factors. Given the disparities in genetic and environmental factors as well as longitudinal stability between PC and original clocks, the results of studies with original clocks need to be further verified with PC clocks.


Subject(s)
Epigenesis, Genetic , Humans , Male , Female , Epigenesis, Genetic/genetics , Middle Aged , Longitudinal Studies , Adult , Twins/genetics , Aged , Gene-Environment Interaction , China , DNA Methylation , Aging/genetics
16.
Int Immunopharmacol ; 138: 112582, 2024 Jul 08.
Article in English | MEDLINE | ID: mdl-38981226

ABSTRACT

Programmed death-1 (PD-1) and programmed death ligand-1 (PD-L1) are key immune checkpoints (ICs) that critically influence immunotherapy. Tumor resistance to single IC-targeting drugs has increased interest in dual-target drugs, which have shown feasibility for cancer treatment. In this study, we aimed to develop dual-target peptide drugs targeting the PD-1/PD-L1 pathway and to evaluate their efficacy compared to functional antibodies in enhancing the cytotoxicity of human T cells against tongue squamous carcinoma cell lines. Through sequence analysis and peptide truncation, we modified a pre-existing peptide named nABPD-1 targeting PD-1. Subsequently, we obtained two novel peptides named nABPD-2 and nABPD-3, with nABPD-2 showing an enhanced affinity for human PD-1 protein compared to nABPD-1. Importantly, nABPD-2 exhibited dual-targeting capability, possessing a high affinity for both PD-L1 and PD-1. Furthermore, nABPD-2 effectively promoted the cytotoxicity of human T cells against tongue squamous carcinoma cell lines, surpassing the efficacy of anti-PD-1 or anti-PD-L1 functional antibodies alone. Considering that nABPD-2 has lower production costs and dose requirements, it can potentially be used in therapeutic applications.

17.
ACS Biomater Sci Eng ; 2024 Jul 16.
Article in English | MEDLINE | ID: mdl-39013076

ABSTRACT

Neuropathic pain is a prevalent form of intermittent chronic pain, affecting approximately 7-10% of the global population. However, the current clinical administration methods, such as injection and oral administration, are mostly one-time administration, which cannot achieve accurate control of pain degree and drug dose. Herein, we developed near-infrared (NIR) light-responsive microneedle patches (MNPs) to spatiotemporally control the drug dose released to treat neuropathic pain according to the onset state. The mechanism of action utilizes upconversion nanoparticles to convert NIR light into visible and ultraviolet light. This conversion triggers the rapid rotation of the azobenzene molecular motor in the mesoporous material, enabling the on-demand controlled release of a drug dose. Additionally, MNs are used to overcome the barrier of the stratum corneum in a minimally invasive and painless manner, effectively promoting the transdermal penetration of drug molecules. The effectiveness of these patches has been demonstrated through significant results. Upon exposure to NIR light for five consecutive cycles, with each cycle lasting 30 s, the patches achieved a precise release of 318 µg of medication. In a mouse model, maximum pain relief was observed within 1 h of one cycle of NIR light exposure, with the effects lasting up to 6 h. The same level of precise treatment efficacy was maintained for subsequent pain episodes with similar light exposure. The NIR-controlled drugs precision-released MNPs provide a novel paradigm for the treatment of intermittent neuropathic pain.

18.
Gut ; 2024 Jul 17.
Article in English | MEDLINE | ID: mdl-38969490

ABSTRACT

OBJECTIVE: Precancerous metaplasia transition to dysplasia poses a risk for subsequent intestinal-type gastric adenocarcinoma. However, the molecular basis underlying the transformation from metaplastic to cancerous cells remains poorly understood. DESIGN: An integrated analysis of genes associated with metaplasia, dysplasia was conducted, verified and characterised in the gastric tissues of patients by single-cell RNA sequencing and immunostaining. Multiple mouse models, including homozygous conditional knockout Klhl21-floxed mice, were generated to investigate the role of Klhl21 deletion in stemness, DNA damage and tumour formation. Mass-spectrometry-based proteomics and ribosome sequencing were used to elucidate the underlying molecular mechanisms. RESULTS: Kelch-like protein 21 (KLHL21) expression progressively decreased in metaplasia, dysplasia and cancer. Genetic deletion of Klhl21 enhances the rapid proliferation of Mist1+ cells and their descendant cells. Klhl21 loss during metaplasia facilitates the recruitment of damaged cells into the cell cycle via STAT3 signalling. Increased STAT3 activity was confirmed in cancer cells lacking KLHL21, boosting self-renewal and tumourigenicity. Mechanistically, the loss of KLHL21 promotes PIK3CB mRNA translation by stabilising the PABPC1-eIF4G complex, subsequently causing STAT3 activation. Pharmacological STAT3 inhibition by TTI-101 elicited anticancer effects, effectively impeding the transition from metaplasia to dysplasia. In patients with gastric cancer, low levels of KLHL21 had a shorter survival rate and a worse response to adjuvant chemotherapy. CONCLUSIONS: Our findings highlighted that KLHL21 loss triggers STAT3 reactivation through PABPC1-mediated PIK3CB translational activation, and targeting STAT3 can reverse preneoplastic metaplasia in KLHL21-deficient stomachs.

19.
Cell Signal ; 121: 111300, 2024 Jul 14.
Article in English | MEDLINE | ID: mdl-39004327

ABSTRACT

BACKGROUND: Craniofacial skeletal deformities can be addressed by applying tensile force to sutures to prompt sutural bone formation. The intricate process of mechanical modulation in craniofacial sutures involves complex biomechanical signal transduction. The small GTPase Ras homolog gene family member A (RhoA) functions as a key mechanotransduction protein, orchestrating the dynamic assembly of the cytoskeleton by activating the Rho-associated coiled-coil containing protein kinase (ROCK). Transcriptional coactivator with PDZ-binding motif (TAZ) serves as a crucial mediator in the regulation of genes and the orchestration of biological functions within the mechanotransduction signaling pathway. However, the role of RhoA/ROCK-TAZ in trans-sutural distraction osteogenesis has not been reported. METHODS: We utilized pre-osteoblast-specific RhoA deletion mice to establish an in vivo calvarial trans-sutural distraction model and an in vitro mechanical stretch model for pre-osteoblasts isolated from neonatal mice. Micro-CT and histological staining were utilized to detect the formation of new bone in the sagittal suture of the skull as well as the activation of RhoA, Osterix and TAZ. The activation of ROCK-limk-cofilin and the nuclear translocation of TAZ in pre-osteoblasts under mechanical tension were detected through Western blot, qRT-PCR, and immunofluorescence. RESULTS: The osteogenic differentiation of pre-osteoblasts was facilitated by mechanical tension through the activation of RhoA and Rho-associated kinase (ROCK), while ablation of RhoA impaired osteogenesis by inhibiting pre-osteoblast differentiation after suture expansion. Furthermore, inhibiting RhoA expression could block tensile-stimulated nuclear translocation of TAZ by preventing F-actin assembly through ROCK-LIM-domain kinase (LIMK)-cofilin pathway. In addition, the TAZ agonist TM-25659 could attenuate impaired osteogenesis caused by ablation of RhoA in pre-osteoblasts by increasing TAZ nuclear accumulation. CONCLUSIONS: This study demonstrates that mechanical stretching promotes the osteogenic differentiation of pre-osteoblasts in trans-sutural distraction osteogenesis, and this process is mediated by the RhoA/ROCK-TAZ signaling axis. Overall, our results may provide an insight for potential treatment strategies for craniosynostosis patients through trans-sutural distraction osteogenesis.

20.
Chemistry ; : e202401916, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-39023507

ABSTRACT

Photodynamic therapy (PDT) can destroy tumor cells by generating singlet oxygen (1O2) under light irradiation, which is limited by the hypoxia of the neoplastic tissue. Chemodynamic therapy (CDT) can produce toxic hydroxyl radical (•OH) to eradicate tumor cells by catalytic decomposition of endogenous hydrogen peroxide (H2O2), the therapeutic effect of which is highly dependent on the concentration of H2O2. Herein, we propose a BODIPY-ferrocene conjugate with a balanced 1O2 and •OH generation capacity, which can serve as a high-efficiency antitumor agent by combining PDT and CDT. The ferrocene moieties endow the as-prepared conjugates with the ability of chemodynamic killing of tumor cells. Moreover, combined PDT/CDT therapy with improved antitumor efficiency can be realized after exposure to light irradiation. Compared with the monotherapy by PDT or CDT, the BODIPY-ferrocene conjugates can significantly increase the intracellular ROS levels of the tumor cells after light irradiation, thereby inducing the tumor cell apoptosis at low drug doses. In this way, a synergistic antitumor treatment is achieved by the combination of PDT and CDT.

SELECTION OF CITATIONS
SEARCH DETAIL
...