Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
1.
IEEE Trans Cybern ; 51(6): 2993-3003, 2021 Jun.
Article in English | MEDLINE | ID: mdl-31871006

ABSTRACT

This article presents a novel path-following-method-based polynomial fuzzy control design. By examining the stabilization problem, the nonconvex stabilization criterion represented in terms of bilinear sum-of-squares (SOS) constraints is proposed to complement the existing convex stabilization criteria. Based on the polynomial Lyapunov function and considering the operation domain, the stabilization control is designed with a systematic region of attraction (ROA) analysis method. Since the proposed stabilization criterion remains in nonconvex form, the conservativeness caused by the transformation from nonconvex (bilinear SOS) constraints into convex (SOS) constraints can be avoided. Moreover, the restriction on the Lyapunov function candidates for the convex transformation in the literature does not exist in the proposed nonconvex stabilization criterion. The stabilization analysis for polynomial fuzzy control systems is concerned with the double fuzzy summation problem that can be treated as the copositivity problem. Therefore, the SOS-based copositive relaxation technique is applied for the proposed stabilization criterion. Since the proposed nonconvex stabilization criterion is represented in terms of bilinear SOS constraints, the path-following method is employed for solving the bilinear SOS problem. Finally, design examples are provided to demonstrate that the proposed nonconvex stabilization criterion complements the existing convex stabilization criteria.

2.
IEEE Trans Syst Man Cybern B Cybern ; 42(5): 1330-42, 2012 Oct.
Article in English | MEDLINE | ID: mdl-22510951

ABSTRACT

This paper presents a sum-of-squares (SOS) approach to polynomial fuzzy observer designs for three classes of polynomial fuzzy systems. The proposed SOS-based framework provides a number of innovations and improvements over the existing linear matrix inequality (LMI)-based approaches to Takagi-Sugeno (T-S) fuzzy controller and observer designs. First, we briefly summarize previous results with respect to a polynomial fuzzy system that is a more general representation of the well-known T-S fuzzy system. Next, we propose polynomial fuzzy observers to estimate states in three classes of polynomial fuzzy systems and derive SOS conditions to design polynomial fuzzy controllers and observers. A remarkable feature of the SOS design conditions for the first two classes (Classes I and II) is that they realize the so-called separation principle, i.e., the polynomial fuzzy controller and observer for each class can be separately designed without lack of guaranteeing the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. Although, for the last class (Class III), the separation principle does not hold, we propose an algorithm to design polynomial fuzzy controller and observer satisfying the stability of the overall control system in addition to converging state-estimation error (via the observer) to zero. All the design conditions in the proposed approach can be represented in terms of SOS and are symbolically and numerically solved via the recently developed SOSTOOLS and a semidefinite-program solver, respectively. To illustrate the validity and applicability of the proposed approach, three design examples are provided. The examples demonstrate the advantages of the SOS-based approaches for the existing LMI approaches to T-S fuzzy observer designs.


Subject(s)
Algorithms , Decision Support Techniques , Feedback , Fuzzy Logic , Models, Statistical , Pattern Recognition, Automated/methods , Computer Simulation , Least-Squares Analysis
3.
IEEE Trans Syst Man Cybern B Cybern ; 39(6): 1634-9, 2009 Dec.
Article in English | MEDLINE | ID: mdl-19661006

ABSTRACT

This correspondence presents servo and nonlinear model following controls for a class of nonlinear systems using the Takagi-Sugeno fuzzy model-based control approach. First, the construction method of the augmented fuzzy system for continuous-time nonlinear systems is proposed by differentiating the original nonlinear system. Second, the dynamic fuzzy servo controller and the dynamic fuzzy model following controller, which can make outputs of the nonlinear system converge to target points and to outputs of the reference system, respectively, are introduced. Finally, the servo and model following controller design conditions are given in terms of linear matrix inequalities. Design examples illustrate the utility of this approach.


Subject(s)
Algorithms , Fuzzy Logic , Nonlinear Dynamics
4.
IEEE Trans Syst Man Cybern B Cybern ; 39(2): 561-7, 2009 Apr.
Article in English | MEDLINE | ID: mdl-19095549

ABSTRACT

This paper presents the guaranteed cost control of polynomial fuzzy systems via a sum of squares (SOS) approach. First, we present a polynomial fuzzy model and controller that are more general representations of the well-known Takagi-Sugeno (T-S) fuzzy model and controller, respectively. Second, we derive a guaranteed cost control design condition based on polynomial Lyapunov functions. Hence, the design approach discussed in this paper is more general than the existing LMI approaches (to T-S fuzzy control system designs) based on quadratic Lyapunov functions. The design condition realizes a guaranteed cost control by minimizing the upper bound of a given performance function. In addition, the design condition in the proposed approach can be represented in terms of SOS and is numerically (partially symbolically) solved via the recent developed SOSTOOLS. To illustrate the validity of the design approach, two design examples are provided. The first example deals with a complicated nonlinear system. The second example presents micro helicopter control. Both the examples show that our approach provides more extensive design results for the existing LMI approach.

5.
IEEE Trans Syst Man Cybern B Cybern ; 36(4): 924-9, 2006 Aug.
Article in English | MEDLINE | ID: mdl-16903375

ABSTRACT

A Takagi-Sugeno (T-S) model is employed to represent a networked control system (NCS) with different network-induced delays. Comparing with existing NCS modeling methods, this approach does not require the knowledge of exact values of network-induced delays. Instead, it addresses situations involving all possible network-induced delays. Moreover, this approach also handles data-packet loss. As an application of the T-S-based modeling method, a parity-equation approach and a fuzzy-observer-based approach for fault detection of an NCS were developed. An example of a two-link inverted pendulum is used to illustrate the utility and viability of the proposed approaches.


Subject(s)
Artificial Intelligence , Computer Communication Networks , Equipment Failure Analysis/methods , Fuzzy Logic , Models, Statistical , Pattern Recognition, Automated/methods , Signal Processing, Computer-Assisted , Algorithms , Computer Simulation , Feedback , Markov Chains
6.
IEEE Trans Syst Man Cybern B Cybern ; 36(1): 13-23, 2006 Feb.
Article in English | MEDLINE | ID: mdl-16468563

ABSTRACT

This paper presents a switching fuzzy controller design for a class of nonlinear systems. A switching fuzzy model is employed to represent the dynamics of a nonlinear system. In our previous papers, we proposed the switching fuzzy model and a switching Lyapunov function and derived stability conditions for open-loop systems. In this paper, we design a switching fuzzy controller. We firstly show that switching fuzzy controller design conditions based on the switching Lyapunov function are given in terms of bilinear matrix inequalities, which is difficult to design the controller numerically. Then, we propose a new controller design approach utilizing an augmented system. By introducing the augmented system which consists of the switching fuzzy model and a stable linear system, the controller design conditions based on the switching Lyapunov function are given in terms of linear matrix inequalities (LMIs). Therefore, we can effectively design the switching fuzzy controller via LMI-based approach. A design example illustrates the utility of this approach. Moreover, we show that the approach proposed in this paper is available in the research area of piecewise linear control.


Subject(s)
Algorithms , Fuzzy Logic , Models, Theoretical , Nonlinear Dynamics , Computer Simulation , Signal Processing, Computer-Assisted , Systems Theory
SELECTION OF CITATIONS
SEARCH DETAIL