Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
BMC Plant Biol ; 23(1): 134, 2023 Mar 08.
Article in English | MEDLINE | ID: mdl-36882703

ABSTRACT

BACKGROUND: Calcium ions (Ca2+), secondary messengers, are crucial for the signal transduction process of the interaction between plants and pathogens. Ca2+ signaling also regulates autophagy. As plant calcium signal-decoding proteins, calcium-dependent protein kinases (CDPKs) have been found to be involved in biotic and abiotic stress responses. However, information on their functions in response to powdery mildew attack in wheat crops is limited. RESULT: In the present study, the expression levels of TaCDPK27, four essential autophagy-related genes (ATGs) (TaATG5, TaATG7, TaATG8, and TaATG10), and two major metacaspase genes, namely, TaMCA1 and TaMCA9, were increased by powdery mildew (Blumeria graminis f. sp. tritici, Bgt) infection in wheat seedling leaves. Silencing TaCDPK27 improves wheat seedling resistance to powdery mildew, with fewer Bgt hyphae occurring on TaCDPK27-silenced wheat seedling leaves than on normal seedlings. In wheat seedling leaves under powdery mildew infection, silencing TaCDPK27 induced excess contents of reactive oxygen species (ROS); decreased the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); and led to an increase in programmed cell death (PCD). Silencing TaCDPK27 also inhibited autophagy in wheat seedling leaves, and silencing TaATG7 also enhanced wheat seedling resistance to powdery mildew infection. TaCDPK27-mCherry and GFP-TaATG8h colocalized in wheat protoplasts. Overexpressed TaCDPK27-mCherry fusions required enhanced autophagy activity in wheat protoplast under carbon starvation. CONCLUSION: These results suggested that TaCDPK27 negatively regulates wheat resistance to PW infection, and functionally links with autophagy in wheat.


Subject(s)
Calcium , Disease Resistance , Plant Diseases , Triticum , Amino Acids , Erysiphe , Protein Kinases , Seedlings , Triticum/genetics , Triticum/microbiology , Disease Resistance/genetics , Plant Diseases/genetics , Plant Diseases/microbiology , Genes, Plant
2.
Front Plant Sci ; 13: 904933, 2022.
Article in English | MEDLINE | ID: mdl-35812918

ABSTRACT

Metacaspases (MCAs), a family of caspase-like proteins, are important regulators of programmed cell death (PCD) in plant defense response. Autophagy is an important regulator of PCD. This study explored the underlying mechanism of the interaction among PCD, MCAs, and autophagy and their impact on wheat response to salt stress. In this study, the wheat salt-responsive gene TaMCA-Id was identified. The open reading frame (ORF) of TaMCA-Id was 1,071 bp, coding 356 amino acids. The predicted molecular weight and isoelectric point were 38,337.03 Da and 8.45, respectively. TaMCA-Id had classic characteristics of type I MCAs domains, a typical N-terminal pro-domain rich in proline. TaMCA-Id was mainly localized in the chloroplast and exhibited nucleocytoplasmictrafficking under NaCl treatment. Increased expression of TaMCA-Id in wheat seedling roots and leaves was triggered by 150 mM NaCl treatment. Silencing of TaMCA-Id enhanced sensitivity of wheat seedlings to NaCl stress. Under NaCl stress, TaMCA-Id-silenced seedlings exhibited a reduction in activities of superoxide dismutase (SOD), peroxidase (POD), and catalase (CAT), higher accumulation of H2O2 and O 2 . - , more serious injury to photosystem II (PSII), increase in PCD level, and autophagy activity in leaves of wheat seedlings. These results indicated that TaMCA-Id functioned in PCD through interacting with autophagy under NaCl stress, which could be used to improve the salt tolerance of crop plants.

3.
Int J Mol Sci ; 23(13)2022 Jul 01.
Article in English | MEDLINE | ID: mdl-35806346

ABSTRACT

As essential calcium ion (Ca2+) sensors in plants, calcium-dependent protein kinases (CDPKs) function in regulating the environmental adaptation of plants. However, the response mechanism of CDPKs to salt stress is not well understood. In the current study, the wheat salt-responsive gene TaCDPK27 was identified. The open reading frame (ORF) of TaCDPK27 was 1875 bp, coding 624 amino acids. The predicted molecular weight and isoelectric point were 68.905 kDa and 5.6, respectively. TaCDPK27 has the closest relationship with subgroup III members of the CDPK family of rice. Increased expression of TaCDPK27 in wheat seedling roots and leaves was triggered by 150 mM NaCl treatment. TaCDPK27 was mainly located in the cytoplasm. After NaCl treatment, some of this protein was transferred to the membrane. The inhibitory effect of TaCDPK27 silencing on the growth of wheat seedlings was slight. After exposure to 150 mM NaCl for 6 days, the NaCl stress tolerance of TaCDPK27-silenced wheat seedlings was reduced, with shorter lengths of both roots and leaves compared with those of the control seedlings. Moreover, silencing of TaCDPK27 further promoted the generation of reactive oxygen species (ROS); reduced the activities of superoxide dismutase (SOD), peroxidase (POD) and catalase (CAT); aggravated the injury to photosystem II (PS II); and increased programmed cell death (PCD) in wheat leaves under NaCl treatment, confirming that the TaCDPK27-silenced seedlings exhibited more NaCl injury than control seedlings. Taken together, the decrease in NaCl tolerance in TaCDPK27-silenced seedlings was due to excessive ROS accumulation and subsequent aggravation of the NaCl-induced PCD. TaCDPK27 may be essential for positively regulating salt tolerance in wheat seedlings.


Subject(s)
Salt Tolerance , Triticum , Calcium/metabolism , Protein Kinases/genetics , Protein Kinases/metabolism , Reactive Oxygen Species/metabolism , Salt Tolerance/genetics , Seedlings/metabolism , Sodium Chloride/metabolism , Sodium Chloride/pharmacology , Triticum/metabolism
4.
Ecotoxicol Environ Saf ; 225: 112761, 2021 Dec 01.
Article in English | MEDLINE | ID: mdl-34509161

ABSTRACT

Salt stress, as an abiotic stress, limits crops production worldwide. Autophagy and programmed cell death (PCD) have been functionally linked to plant adaptation to abiotic stress. However, the relation of autophagy and PCD is still under debate and the mechanism behind remains not fully understood. In this study, salt-tolerant wheat cultivar Jimai22 was used as the experimental material, and 150 mM NaCl was added to the hydroponic culture to test the effect of salt treatment. The results showed that NaCl stress enhances autophagic activity and induced occurrence of PCD in roots and leaves of wheat seedlings. Then, the barley stripe mosaic virus-induced silencing (BSMV-VIGS) method was used to inhibit autophagy by silencing the expression of ATG2 or ATG7. The results showed that silencing of ATG2 or ATG7 significantly inhibited autophagy and impaired the tolerance of wheat to NaCl stress. Moreover, silencing of ATG2 or ATG7 disrupted the absorption of Na, Cl, K and Ca elements and led to subsequent disequilibrium of Na+, Cl-, K+ and Ca2+, induced generation of excess reactive oxygen species (ROS), decreased the antioxidant activity, damaged photosynthesis apparatus, increased the level of PCD and led to differential expression of the genes, two metacaspase genes, cysteine-rich receptor-like kinase (CRK) 10, and CRK26 in leaves of wheat seedlings under NaCl stress. The effect of the inhibitor 3-methyladenine (3-MA) on roots and leaves of wheat seedlings was in accordance with that of ATG2 and ATG7 silencing. Our results suggest that autophagy negatively regulates salt-induced PCD, or limits the scale of salt-induced PCD to avoid severe tissue death in wheat seedlings.


Subject(s)
Autophagy-Related Protein 7/genetics , Autophagy-Related Proteins/genetics , Seedlings , Triticum , Apoptosis , Autophagy , Salt Stress , Seedlings/genetics , Triticum/genetics
5.
Yi Chuan ; 32(6): 571-6, 2010 Jun.
Article in Chinese | MEDLINE | ID: mdl-20566460

ABSTRACT

Bacteria often sequentially utilize coexisting carbohydrates in environment and firstly select the one (frequently glucose) easiest to metabolize. This phenomenon is known as carbon catabolite repression (CCR). In existing Chinese teaching materials of molecular biology and related courses, unclear or even wrong interpretations are given about CCR mechanism. A large number of studies have shown that rather than the existence of intracellular glucose, CCR is mainly caused by the glucose transport process coupling with glucose phosphorylation via the phosphoenolpyruvate: carbohydrate phosphotransferase system PTS. The transport process leads to accumulation of dephosphorylated form of EAGlc.This form of EAGlc can bind the membrane-localized LacY protein to block the uptake of lactose inducer. cAMP functions in activation of key genes involved in PTS system to strengthen the role of inducer exclusion. In addition, dephosphorylated form of EBGlc and Yee bind global transcription repressor Mlc to ensure the expression of key genes involved in the PTS system. This review summarizes the current advancement in mechanism of Escherichia coli carbon catabolite repression.


Subject(s)
Carbohydrate Metabolism , Escherichia coli/metabolism , Cyclic AMP/physiology , Cyclic AMP Receptor Protein/physiology , Phosphoenolpyruvate Sugar Phosphotransferase System/physiology
6.
Plant Cell Physiol ; 48(12): 1702-12, 2007 Dec.
Article in English | MEDLINE | ID: mdl-17947258

ABSTRACT

A full-length cDNA (Hv-GR) whose transcript accumulation increased in response to infection by Blumeria graminis DC.f.sp. tritici (Bgt) was isolated from Haynaldia villosa. Southern analysis revealed a single copy of Hv-GR present in H. villosa. This gene encodes a glutathione reductase (GR) with high similarity to chloroplastic GRs from other plant species. Chloroplastic localization of Hv-GR was confirmed by targeting of the green fluorescent protein (GFP)-Hv-GR fusion protein to chloroplasts of epidermal guard cells. Following inoculation with Bgt, transcript accumulation of Hv-GR increased in a resistant line of wheat, but no significant change was observed in a susceptible line. In vivo function of Hv-GR in converting oxidized glutathione (GSSG) to the reduced form (GSH) was verified through heterologous expression of Hv-GR in a yeast GR-deficient mutant. As expected, overexpression of this gene resulted in increased resistance of the mutant to H(2)O(2), indicating a critical role for Hv-GR in protecting cells against oxidative stress. Moreover, overexpression of Hv-GR in a susceptible wheat variety, Triticum aestivum cv. Yangmai 158, enhanced resistance to powdery mildew and induced transcript accumulation of other pathogenesis-related genes, PR-1a and PR-5, through increasing the foliar GSH/GSSG ratio. Therefore, we concluded that a high ratio of GSH to GSSG is required for wheat defense against Bgt, and that chloroplastic GR enzymes might serve as a redox mediator for NPR1 activation.


Subject(s)
Fungi/pathogenicity , Glutathione Reductase/metabolism , Plastids/enzymology , Triticum/microbiology , Amino Acid Sequence , Base Sequence , DNA Primers , Expressed Sequence Tags , Molecular Sequence Data , Sequence Homology, Amino Acid
7.
Sheng Wu Gong Cheng Xue Bao ; 23(3): 367-74, 2007 May.
Article in Chinese | MEDLINE | ID: mdl-17577977

ABSTRACT

With the development of structural and functional genomics, nowadays specific plant genome and transcriptome sequences can be cloned much easier and faster. Next step is to identify the functions of different genes and regulating elements to unravel the genetic mechanisms behind plant growth and development. Expression and its regulation are the language and dynamic property of genetic material, so expression and regulation analysis of target genes and sequences in plant cell is the basis for function study. Besides stable genetic transformation, plant transient expression system gains broad application in recent years, and its combination with other new technologies as gene shuffling, VIGS and RNAi plays a more and more important role in plant functional genomics.


Subject(s)
Gene Expression Profiling , Genome, Plant/genetics , Plants, Genetically Modified/genetics , Plants/genetics , Genomics/methods , Genomics/trends , Immunity, Innate/genetics , Plant Diseases/genetics , RNA Interference
8.
Yi Chuan ; 29(2): 243-9, 2007 Feb.
Article in Chinese | MEDLINE | ID: mdl-17369184

ABSTRACT

Anthocyanin synthesis regulation gene C1-Lc was used as the reporter gene to optimize the parameters of gene-gun transformation protocol through counting of red spots on wheat calli after transient expression. Wheat Beclin1 like gene TaTBL and thiosulfate sulfutransferase gene TaTST proved to have an increased expression level after induction of wheat powdery mildew fungus (Erysiphe graminis f.sp. tritici Em. Marchal.). These two resistance-related genes were constructed into expression vectors driven by the strong ubi promoter and used to perform genetic transformation on wheat cv Yangmai158 immature embryo-derived calli through particle bombardment. After two rounds of herbicide bialaphos selection and regeneration, herbicide-resistance plants were obtained, which were subsequently subjected to PCR analysis. Five TaTBL transgenic plants and six TaTST transgenic plants were identified. Pathogen inoculation of detached leaves showed that the introduction of exogenous gene increased wheat resistance level by delaying the development of powdery mildew symptoms.


Subject(s)
Ascomycota/physiology , Plant Diseases/genetics , Plants, Genetically Modified/genetics , Triticum/genetics , Gene Expression Regulation, Plant , Genetic Vectors/genetics , Herbicides/pharmacology , Host-Pathogen Interactions , Immunity, Innate/genetics , Organophosphorus Compounds/pharmacology , Plant Diseases/microbiology , Plants, Genetically Modified/drug effects , Plants, Genetically Modified/microbiology , Promoter Regions, Genetic/genetics , Thiosulfate Sulfurtransferase/genetics , Transformation, Genetic , Triticum/drug effects , Triticum/microbiology
9.
Yi Chuan Xue Bao ; 32(9): 930-6, 2005 Sep.
Article in Chinese | MEDLINE | ID: mdl-16201236

ABSTRACT

Transient expression system was used to analyze the functions of three resistance- related genes: TaTBL, TaPK1 and TaTST. Target genes were constructed into plant expression vectors and transformed into leaf epidermal cells of a powdery mildew-susceptible wheat variety by gene gun. GUS gene was co-transformed with target gene to mark the transformed cells. After transformation, leaf surface was inoculated with powdery mildew conidiospores. Forty eight hours after inoculation, penetration of the fungus and formation of haustoria in transformed cells were observed to evaluate the effects of the target gene's products on the invasion of powdery mildew. The results implied that all these three genes, when transiently expressed in leaf epidermal cells of susceptible wheat variety, could partly inhibit the penetration of conidiospores and formation of haustoria, and to some extent increase the resistance of cells to powdery mildew.


Subject(s)
Genes, Plant/genetics , Plant Diseases/genetics , Triticum/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/metabolism , Apoptosis Regulatory Proteins/physiology , Ascomycota/growth & development , Beclin-1 , Gene Expression Regulation, Plant , Glucuronidase/genetics , Glucuronidase/metabolism , Green Fluorescent Proteins/genetics , Green Fluorescent Proteins/metabolism , Immunity, Innate/genetics , Membrane Proteins/genetics , Membrane Proteins/metabolism , Membrane Proteins/physiology , Microscopy, Fluorescence , Plant Diseases/microbiology , Plant Epidermis/genetics , Plant Epidermis/metabolism , Plant Epidermis/microbiology , Plant Leaves/genetics , Plant Leaves/metabolism , Plant Leaves/microbiology , Protein Serine-Threonine Kinases/genetics , Protein Serine-Threonine Kinases/metabolism , Protein Serine-Threonine Kinases/physiology , Recombinant Fusion Proteins/genetics , Recombinant Fusion Proteins/metabolism , Thiosulfate Sulfurtransferase/genetics , Thiosulfate Sulfurtransferase/metabolism , Thiosulfate Sulfurtransferase/physiology , Transformation, Genetic , Triticum/metabolism , Triticum/microbiology
SELECTION OF CITATIONS
SEARCH DETAIL
...