Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 40
Filter
Add more filters










Publication year range
1.
J Am Chem Soc ; 2024 Jul 15.
Article in English | MEDLINE | ID: mdl-39007348

ABSTRACT

Incipient ferroelectrics have emerged as an attractive class of functional materials owing to their potential to be engineered for exotic ferroelectric behavior, holding great promise for expanding the ferroelectric family. However, thus far, their artificially engineered ferroelectricity has fallen far short of rivaling classic ferroelectrics. In this study, we address this challenge by developing a superfine nanodomain engineering strategy. By applying this approach to representative incipient ferroelectric of SrTiO3-based films, we achieve unprecedentedly strong ferroelectricity, not only surpassing previous records for incipient ferroelectrics but also being comparable to classic ferroelectrics. The remanent polarization of the thin film reaches up to 17.0 µC cm-2 with an ultrahigh Curie temperature of 973 K. Atomic-scale investigations elucidate the origin of this robust ferroelectricity in the emergent high-density superfine nanodomains spanning merely 3-10 unit cells. Combining experimental results with theoretical assessments, we unveil the underlying mechanism, where the intentionally introduced diluted foreign Fe element creates a deeper Landau energy well and promotes a short-range ordering of polarization. Our developed strategy significantly streamlines the design of unconventional ferroelectrics, providing a versatile pathway for exploring new and superior ferroelectric materials.

2.
Science ; 379(6638): 1218-1224, 2023 Mar 24.
Article in English | MEDLINE | ID: mdl-36952424

ABSTRACT

Atomic-scale ferroelectrics are of great interest for high-density electronics, particularly field-effect transistors, low-power logic, and nonvolatile memories. We devised a film with a layered structure of bismuth oxide that can stabilize the ferroelectric state down to 1 nanometer through samarium bondage. This film can be grown on a variety of substrates with a cost-effective chemical solution deposition. We observed a standard ferroelectric hysteresis loop down to a thickness of ~1 nanometer. The thin films with thicknesses that range from 1 to 4.56 nanometers possess a relatively large remanent polarization from 17 to 50 microcoulombs per square centimeter. We verified the structure with first-principles calculations, which also pointed to the material being a lone pair-driven ferroelectric material. The structure design of the ultrathin ferroelectric films has great potential for the manufacturing of atomic-scale electronic devices.

3.
Nano Lett ; 23(4): 1273-1279, 2023 Feb 22.
Article in English | MEDLINE | ID: mdl-36729943

ABSTRACT

Regulating the magnetic properties of multiferroics lays the foundation for their prospective application in spintronic devices. Single-phase multiferroics, such as rare-earth ferrites, are promising candidates; however, they typically exhibit weak magnetism at room temperature (RT). Here, we significantly boosted the RT ferromagnetism of a representative ferrite, EuFeO3, by oxygen defect engineering. Polarized neutron reflectometry and magnetometry measurements reveal that saturation magnetization reaches 0.04 µB/Fe, which is approximately 5 times higher than its bulk phase. Combining the annular bright-field images with theoretical assessment, we unravel the underlying mechanism for magnetic enhancement, in which the decrease in Fe-O-Fe bond angles caused by oxygen vacancies (VO) strengthens magnetic interactions and tilts Fe spins. Furthermore, the internal relationship between magnetism and VO was established by illustrating how the magnetic structure and magnitude change with VO configuration and concentration. Our strategy for regulating magnetic properties can be applied to numerous functional oxide materials.

4.
Phys Rev Lett ; 131(24): 246801, 2023 Dec 15.
Article in English | MEDLINE | ID: mdl-38181148

ABSTRACT

Disordered ferroics hold great promise for next-generation magnetoelectric devices because their lack of symmetry constraints implies negligible hysteresis with low energy costs. However, the transition temperature and the magnitude of polarization and magnetization are still too low to meet application requirements. Here, taking the prototype perovskite of SrTiO_{3} as an instance, we realize a coexisting spin and dipole reentrant glass states in SrTiO_{3} homoepitaxial films via manipulation of local symmetry. Room-temperature saturation magnetization and spontaneous polarization reach ∼ 10 emu/cm^{3} and ∼ 25 µC/cm^{2}, respectively, with high transition temperatures (101 K and 236 K for spin and dipole glass temperatures and 556 K and 1100 K for Curie temperatures, respectively). Our atomic-scale investigation points out an underlying mechanism, where the Ti/O-defective unit cells break the local translational and orbital symmetry to drive the formation of unusual slush states. This study advances our understanding of the nature of the intricate couplings of ferroic glasses. Our approach could be applied to numerous perovskite oxides for the simultaneous control of the local magnetic and polar orderings and for the exploration of the underlying physics.

5.
J Phys Condens Matter ; 35(8)2022 Dec 22.
Article in English | MEDLINE | ID: mdl-36544395

ABSTRACT

As the thickness of a transition metal oxide thin film is reduced to several unit cells, dimensional and interfacial effects modulate its structure and properties, and initiate low-dimension quantum phase transitions different from its bulk counterparts. To check if a metal-insulator transition (MIT) occurs to a low-dimensional 4d2electron systems, we investigated SrMoO3thin films by characterizing and analyzing their lattice structures, electric transport properties and electronic states. Among various dimensional effects and interfacial effects, quantum confinement effect (QCE) was discerned as the dominating mechanism of the thickness-driven MIT. Surface/interface scattering contributes to the residual resistivity while the competition of several interactions modulated by QCE governs the temperature dependence of the resistivity of SrMoO3ultrathin films.

7.
Nanomaterials (Basel) ; 12(17)2022 Aug 30.
Article in English | MEDLINE | ID: mdl-36080045

ABSTRACT

Semipolar (112¯2) InGaN/GaN superlattice templates with different periodical InGaN layer thicknesses were grown on m-plane sapphire substrates using metal-organic chemical vapor deposition (MOCVD). The strain in the superlattice layers, the relaxation mechanism and the influence of the strain relaxation on the semipolar superlattice template were explored. The results demonstrated that the strain in the (112¯2) InGaN/GaN superlattice templates was anisotropic and increased with increasing InGaN thickness. The strain relaxation in the InGaN/GaN superlattice templates was related to the formation of one-dimension misfit dislocation arrays in the superlattice structure, which caused tilts in the superlattice layer. Whereas, the rate of increase of the strain became slower with increasing InGaN thickness and new misfit dislocations emerged, which damaged the quality of the superlattice relaxed templates. The strain relaxation in the superlattice structure improved the surface microtopography and increased the incorporation of indium in the InGaN epitaxial layers.

8.
Sci Adv ; 8(13): eabm8550, 2022 Apr.
Article in English | MEDLINE | ID: mdl-35363530

ABSTRACT

The orthorhombic rare-earth manganates and ferrites multiferroics are promising candidates for the next generation multistate spintronic devices. However, their ferroelectric polarization is small, and transition temperature is far below room temperature (RT). The improvement of ferroelectricity remains challenging. Here, through the subtle strain and defect engineering, an RT colossal polarization of 4.14 µC/cm2 is achieved in SmFeO3-δ films, which is two orders of magnitude larger than its bulk and is also the largest one among the orthorhombic rare-earth manganite and ferrite family. Meanwhile, its RT magnetism is uniformly distributed in the film. Combining the integrated differential phase-contrast imaging and density functional theory calculations, we reveal the origin of this superior ferroelectricity in which the purposely introduced oxygen vacancies in the Fe-O layer distorts the FeO6 octahedral cage and drives the Fe ion away from its high-symmetry position. The present approach can be applied to improve ferroelectric properties for multiferroics.

9.
ACS Appl Mater Interfaces ; 14(14): 16928-16938, 2022 Apr 13.
Article in English | MEDLINE | ID: mdl-35353496

ABSTRACT

Developing atomic-scale synthesis control is a prerequisite for understanding and engineering the exotic physics inherent to transition-metal oxide heterostructures. Thus, far, however, the number of materials systems explored has been extremely limited, particularly with regard to the crystalline substrate, which is routinely SrTiO3. Here, we investigate the growth of a rare-earth nickelate─LaNiO3─on (LaAlO3)(Sr2AlTaO6) (LSAT) (001) by oxide molecular beam epitaxy (MBE). Whereas the LSAT substrates are smooth, they do not exhibit the single surface termination usually assumed necessary for control over the interface structure. Performing both nonresonant and resonant anomalous in situ synchrotron surface X-ray scattering during MBE growth, we show that reproducible heterostructures can be achieved regardless of both the mixed surface termination and the layer-by-layer deposition sequence. The rearrangement of the layers occurs dynamically during growth, resulting in the fabrication of high-quality LaNiO3/LSAT heterostructures with a sharp and consistent interfacial structure. This is due to the thermodynamics of the deposition window as well as the nature of the chemical species at interfaces─here, the flexible charge state of nickel at the oxide surface. This has important implications regarding the use of a wider variety of substrates for fundamental studies on complex oxide synthesis.

10.
J Environ Manage ; 292: 112578, 2021 Aug 15.
Article in English | MEDLINE | ID: mdl-33965685

ABSTRACT

To investigate the effect of a constructed wetland (CW) with steel slag as the filler on water contaminated by low phosphorus levels, a multistage pond CW system was designed in this study. Low-phosphorus polluted river water was used as the research object. This study explored the effects of using steel slag as a CW filler on phosphorus removal and the total phosphorus (TP) purification effect of the wetland system. The results showed that the TP removal rates in the ecological pond, oxidation pond, surface flow wetlands and submerged plant pond were 5.17%, 8.02%, 21.56%, and 16.31%, respectively. Intermittent increases in phosphorus concentration were observed in the reactors and were caused by the decay of plant tissues, which released pollutants. Because steel slag was added to the filler, the TP concentrations in the effluent of the first- and second-level horizontal subsurface CWs increased by 151.13% and 16.29%, respectively, compared to the influent concentration. The 20th to 40th days of the test run was a period of rapid phosphorus release of the system. The use of steel slag has a potential risk of phosphorus release when applied in CWs used to purify low-phosphorus contaminated water bodies.


Subject(s)
Water Purification , Wetlands , Nitrogen , Phosphorus , Rivers , Steel , Waste Disposal, Fluid , Water
11.
J Am Chem Soc ; 143(17): 6491-6497, 2021 May 05.
Article in English | MEDLINE | ID: mdl-33900066

ABSTRACT

Although BaTiO3 is one of the most famous lead-free piezomaterials, it suffers from small spontaneous and low Curie temperature. Chemical pressure, as a mild way to modulate the structures and properties of materials by element doping, has been utilized to enhance the ferroelectricity of BaTiO3 but is not efficient enough. Here, we report a promoted chemical pressure route to prepare high-performance BaTiO3 films, achieving the highest remanent polarization, Pr (100 µC/cm2), to date and high Curie temperature, Tc (above 1000 °C). The negative chemical pressure (∼-5.7 GPa) was imposed by the coherent lattice strain from large cubic BaO to small tetragonal BaTiO3, generating high tetragonality (c/a = 1.12) and facilitating large displacements of Ti. Such negative pressure is especially significant to the bonding states, i.e., hybridization of Ba 5p-O 2p, whereas ionic bonding in bulk and strong bonding of Ti eg and O 2p, which contribute to the tremendously enhanced polarization. The promoted chemical pressure method shows general potential in improving ferroelectric and other functional materials.

12.
Ecotoxicol Environ Saf ; 213: 111997, 2021 Apr 15.
Article in English | MEDLINE | ID: mdl-33582416

ABSTRACT

Antibiotics are widely detected in the water environment, posing a serious threat to the health of humans and animals. The effect of levofloxacin (LOFL) on pollutant removal and the difference in the influence mechanisms at normal and low temperatures in constructed wetlands are worth discussing. A hydroponic culture experiment was designed with Iris pseudacorus L. at low and normal temperatures. LOFL (0-100 µg/L) was added to the systems. The results indicated that the removal of pollutants was affected most by temperature, followed by LOFL concentration. At the same concentration of LOFL, the pollutant removal rate was significantly higher at normal temperature than at low temperature. Low concentrations of LOFL promoted the degradation of pollutants except TN under normal-temperature conditions. Compared with the results at low temperature, the bacterial community richness was higher and the diversity of bacterial communities was lower under normal-temperature conditions. The genera and the function of bacteria were greatly affected by antibiotic concentration, temperature and test time. A series of microorganisms resistant to antibiotics and low temperature were identified in this study. The results will provide valuable information and a reference for our understanding of the ecological effects of LOFL.


Subject(s)
Hydroponics , Iris Plant/microbiology , Waste Disposal, Fluid/methods , Anti-Bacterial Agents/metabolism , Bacteria , Humans , Iris , Iris Plant/metabolism , Temperature , Wastewater/chemistry , Wastewater/microbiology , Wetlands
13.
J Phys Condens Matter ; 33(15)2021 Feb 18.
Article in English | MEDLINE | ID: mdl-33498026

ABSTRACT

We report growth, electronic structure and superconductivity of ultrathin epitaxial CoSi2films on Si (111). At low coverages, preferred islands with 2, 5 and 6 monolayers height develop, which agrees well with the surface energy calculation. We observe clear quantum well states as a result of electronic confinement and their dispersion agrees well with density functional theory calculations, indicating weak correlation effect despite strong contributions from Co 3delectrons.Ex situtransport measurements show that superconductivity persists down to at least 10 monolayers, with reducedTcbut largely enhanced upper critical field. Our study opens up the opportunity to study the interplay between quantum confinement, interfacial symmetry breaking and superconductivity in an epitaxial silicide film, which is technologically relevant in microelectronics.

14.
Nat Commun ; 11(1): 1672, 2020 Apr 03.
Article in English | MEDLINE | ID: mdl-32246083

ABSTRACT

Reduced-dimensional (quasi-2D) perovskite materials are widely applied for perovskite photovoltaics due to their remarkable environmental stability. However, their device performance still lags far behind traditional three dimensional perovskites, particularly high open circuit voltage (Voc) loss. Here, inhomogeneous energy landscape is pointed out to be the sole reason, which introduces extra energy loss, creates band tail states and inhibits minority carrier transport. We thus propose to form homogeneous energy landscape to overcome the problem. A synergistic approach is conceived, by taking advantage of material structure and crystallization kinetic engineering. Accordingly, with the help of density functional theory guided material design, (aminomethyl) piperidinium quasi-2D perovskites are selected. The lowest energy distribution and homogeneous energy landscape are achieved through carefully regulating their crystallization kinetics. We conclude that homogeneous energy landscape significantly reduces the Shockley-Read-Hall recombination and suppresses the quasi-Fermi level splitting, which is crucial to achieve high Voc.

15.
Nano Lett ; 20(2): 881-886, 2020 Feb 12.
Article in English | MEDLINE | ID: mdl-31887059

ABSTRACT

The coupling strain in nanoscale systems can achieve control of the physical properties in functional materials, such as ferromagnets, ferroelectrics, and superconductors. Here, we directly demonstrate the atomic-scale structure of super-tetragonal PbTiO3 nanocomposite epitaxial thin films, including the extraordinary coupling of strain transition and the existence of the oxygen vacancies. Large strain gradients, both longitudinal and transverse (∼3 × 107 m-1), have been observed. The original non-magnetic ferroelectric composites notably evoke ferromagnetic properties, derived from the combination of Ti3+ and oxygen vacancies. The saturation ferromagnetic moment can be controlled by the strain of both the interphase and substrate, optimized to a high value of ∼55 emu/cc in 10-nm thick nanocomposite epitaxial thin films on the LaAlO3 substrate. Strain engineering provides a route to explore multiferroic systems in conventional non-magnetic ferroelectric oxides and to create functional data storage devices from both ferroelectrics and ferromagnetics.

16.
Nat Commun ; 10(1): 1868, 2019 04 23.
Article in English | MEDLINE | ID: mdl-31015430

ABSTRACT

Device performance and in particular device stability for blue perovskite light-emitting diodes (PeLEDs) remain considerable challenges for the whole community. In this manuscript, we conceive an approach by tuning the 'A-site' cation composition of perovskites to develop blue-emitters. We herein report a Rubidium-Cesium alloyed, quasi-two-dimensional perovskite and demonstrate its great potential for pure-blue PeLED applications. Composition engineering and in-situ passivation are conducted to further improve the material's emission property and stabilities. Consequently, we get a prominent film photoluminescence quantum yield of around 82% under low excitation density. Encouraged by these findings, we finally achieve a spectra-stable blue PeLED with the peak external quantum efficiency of 1.35% and a half-lifetime of 14.5 min, representing the most efficient and stable pure-blue PeLEDs reported so far. The strategy is also demonstrated to be able to generate efficient perovskite blue emitters and PeLEDs in the whole blue spectral region (from 454 to 492 nm).

17.
Science ; 361(6401): 494-497, 2018 08 03.
Article in English | MEDLINE | ID: mdl-30072536

ABSTRACT

Strain engineering has emerged as a powerful tool to enhance the performance of known functional materials. Here we demonstrate a general and practical method to obtain super-tetragonality and giant polarization using interphase strain. We use this method to create an out-of-plane-to-in-plane lattice parameter ratio of 1.238 in epitaxial composite thin films of tetragonal lead titanate (PbTiO3), compared to 1.065 in bulk. These thin films with super-tetragonal structure possess a giant remanent polarization, 236.3 microcoulombs per square centimeter, which is almost twice the value of known ferroelectrics. The super-tetragonal phase is stable up to 725°C, compared to the bulk transition temperature of 490°C. The interphase-strain approach could enhance the physical properties of other functional materials.

19.
Mar Pollut Bull ; 124(2): 639-644, 2017 Nov 30.
Article in English | MEDLINE | ID: mdl-28249688

ABSTRACT

Marine pollution by metals has been a major challenge for ecological systems; however, water quality criteria (WQC) for metals in saltwater is still lacking. Especially from a regulatory perspective, chronic effects of metals on marine organisms should receive more attention. A quantitative ion characteristic-activity relationships-species sensitivity distributions (QICAR-SSD) model, based on chronic toxicities for eight marine organisms, was established to predict the criteria continuous concentrations (CCCs) of 21 metals. The results showed that the chronic toxicities of various metals had good relationships with their physicochemical properties. Predicted CCCs of six metals (Hg2+, Cu2+, Pb2+, Cd2+, Ni2+ and Zn2+) were in accordance with the values recommended by the U.S. EPA, with prediction errors being less than an order of magnitude. The QICAR-SSD approach provides an alternative tool to empirical methods and can be useful for deriving scientifically defensible WQC for metals for marine organisms and conducting ecological risk assessments.


Subject(s)
Ecotoxicology/methods , Metalloids/analysis , Metals/analysis , Models, Biological , Water Pollutants, Chemical/analysis , Animals , Aquatic Organisms/drug effects , Ecosystem , Metalloids/toxicity , Metals/toxicity , Risk Assessment/methods , Species Specificity , Toxicity Tests, Chronic , Water Pollutants, Chemical/toxicity , Water Quality
20.
Sci Total Environ ; 586: 817-826, 2017 May 15.
Article in English | MEDLINE | ID: mdl-28202242

ABSTRACT

There has been limited research investigating how the mechanisms of aggregation of magnetic nanoparticles (MNPs) are affected by inorganic ions. In this study, Na+, Mg2+, Ca2+, Sr2+ and Ba2+ were selected to systematically study the aggregation mechanisms of Fe3O4 MNPs. The results indicated that divalent cations more significantly affected the stabilities of MNPs than Na+ at low concentrations (e.g., 0.1mM) in a decreasing order of Ba2+>Sr2+>Ca2+>Mg2+>Na+. Extended DLVO theory did not offer a satisfactory explanation for the above difference due because it ignores specific ion effects. It was also found that the initial adsorption ratios of these metals by Fe3O4 MNPs were linearly proportional to the hydrodynamic diameter (HDD) of Fe3O4 MNPs before aggregation occurred. In addition to the valence states, the hydration forces and ionic radii of the metal cations were proposed to be other factors that significantly affected the interactions of metal cations with Fe3O4 MNPs based on the excellent linear relationships of the HDD of Fe3O4 MNPs and these three factors. Moreover, a bridging function of divalent cations might develop after aggregation occurred based on the increases in their adsorption amounts and intensities for binding oxygen-containing functional groups. In addition, an increase in the positive ζ potential of MNPs was observed with the addition of divalent cations until 10.0mM at a pH of 5.0, which potentially enhances the resistance of MNPs to aggregation in aquatic systems compared with Na+. Consequentially, the effects of metal cations on the aggregation of MNPs are determined by the hydration forces, valance states, ionic radii and bond types formed on the MNPs. Thus, the specific ion effects of these cations should be considered in predicting the environmental behaviors of specific nanomaterials.

SELECTION OF CITATIONS
SEARCH DETAIL
...