Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 8 de 8
Filter
Add more filters










Database
Type of study
Language
Publication year range
1.
Sci Total Environ ; 937: 173412, 2024 Aug 10.
Article in English | MEDLINE | ID: mdl-38797405

ABSTRACT

Lakes are important sources of methane (CH4), and understanding the influence of environmental factors on CH4 concentration in lake water is crucial for accurately assessing CH4 emission from lakes. In this study, we investigated CH4 concentration in two connected Tibetan Plateau lakes, Lake Keluke (an open freshwater lake) and Lake Tuosu (a closed saline lake), through in-situ continuous measurements taken in different months from 2021 to 2023. The results show substantial spatial and seasonal variations in CH4 concentrations in the two lakes, while the CH4 concentrations in Lake Keluke are consistently higher than those in Lake Tuosu for each month. Despite sharing similar environmental conditions due to connected (e.g. pH, water temperature, dissolved oxygen content, and total organic carbon content), the critical difference between the two lakes is their salinity. This implies that salinity is the critical factor contributing to the decrease in CH4 concentrations in Lake Tuosu, possibly due to the changes in microbial species between freshwater and brackish/saline lakes. Additionally, to further validate the effect of salinity on CH4 concentrations in lake water, we compared the CH4 concentrations of 33 lakes (including 5 saline lakes and 28 freshwater lakes) from the Tibetan Plateau, Chinese Loess Plateau, and Yangtze Plain, and found that saline lakes consistently exhibit lower CH4 concentrations (avg. 0.08 µmol/L), while freshwater lakes generally display higher CH4 concentrations (avg. 1.25 µmol/L) with considerable fluctuations. Consequently, freshwater and saline lakes exhibit distinct CH4 emissions, which could be used for more accurate estimation of global CH4 emission from lakes.

2.
Nat Commun ; 15(1): 1507, 2024 Feb 19.
Article in English | MEDLINE | ID: mdl-38374274

ABSTRACT

The Holocene temperature conundrum, the discrepancy between proxy-based Holocene global cooling and simulated global annual warming trends, remains controversial. Meanwhile, reconstructions and simulations show inconsistent spatial patterns of terrestrial temperature changes. Here we report Holocene alkenone records to address spatial patterns over mid-latitude Eurasia. In contrast with long-term cooling trends in warm season temperatures in northeastern China, records from southwestern Siberia are characterized by colder conditions before ~6,000 years ago, thus long-term warming trends. Together with existing records from surrounding regions, we infer that colder airmass might have prevailed in the interior of mid-latitude Eurasian continent during the early to mid-Holocene, perhaps associated with atmospheric response to remnant ice sheets. Our results challenge the proposed seasonality bias in proxies and modeled spatial patterns in study region, highlighting that spatial patterns of Holocene temperature changes should be re-considered in record integrations and model simulations, with important implications for terrestrial hydroclimate changes.

3.
Sci Total Environ ; 877: 162970, 2023 Jun 15.
Article in English | MEDLINE | ID: mdl-36958560

ABSTRACT

Knowledge of hydrogen isotopic fractionation (ε) of plant leaf waxes is the foundation for applying hydrogen isotope values (δ2H) in environmental reconstructions. In this work, we systematically investigated plant ε values (εalk/precipitation, εalk/soil water, εalk/leaf water and εalk/lake water, representing the isotopic fractionation between plant n-alkane δ2H and precipitation δ2H, soil water δ2H, leaf water δ2H and lake water δ2H) from the natural environments and manipulation experiments. The results show that the εalk/precipitation values of terrestrial plants have large variations (from -190 ‰ to -20 ‰) and become more negative with increasing aridity index. This phenomenon is possibly caused by the δ2H changes in source water (from precipitation to soil water and then to leaf water) during plant leaf wax synthesis under various evapotranspiration conditions in different climatic zones. The rainfall manipulation experiments show that leaf water δ2H values are generally higher than soil water δ2H values, and the latter are higher than precipitation δ2H values. This finding further demonstrates that the evapotranspiration effect on source water δ2H affects the quantification of the leaf wax apparent ε values (εalk/leaf water < Îµalk/soil water < Îµalk/precipitation). The εalk/lake water values of submerged plants display a smaller range (-153 ± 5 ‰) than the εalk/precipitation values of terrestrial plants, which is close to the terrestrial εalk/precipitation values in humid areas. Therefore, the biosynthetic ε value of terrestrial plant leaf waxes is relatively constant (ca. -153 ± 5 ‰), and the observed variable apparent εalk/precipitation values are possibly caused by the varied degree of evapotranspiration effect on the water that plants used in different climatic conditions. This effect should be considered when applying δ2H values of leaf waxes to trace environmental changes.

4.
Sci Rep ; 12(1): 22517, 2022 12 29.
Article in English | MEDLINE | ID: mdl-36581698

ABSTRACT

Plant materials used in the construction of segments and beacon towers of the ancient Great Wall in northwestern China contain untapped potential for revealing local paleoclimatic and environmental conditions. For the first time, we characterize the molecular preservation and stable carbon and nitrogen isotope compositions of AMS-dated common reeds (Phragmites) collected from ancient Great Wall fascines in today's Gansu and Xinjiang using a combination of chromatographic techniques and isotope analyses. Our molecular data, along with Scanning Electron Microscopy, demonstrate excellent preservation of these ancient reeds, which were harvested from nearby habitats during periods of significant expansion of Imperial China when climate conditions sustained sizeable oases in the region. Stable isotope data capture differential rates of environmental change along the eastern margin of the Tarim Basin since the Han Dynasty (170 BC), implying that significant surface-water hydrological changes occurred only after the Song Dynasty (1160 AD) due to regional climate change. This study reveals the wealth of environmental and climate information obtainable from these site-specific organic building materials and establishes the foundation for further applications of advanced molecular, biochemical, and isotopic technologies to study these common and widely-distributed organic archaeological materials.


Subject(s)
Carbon , Ecosystem , Poaceae , Nitrogen Isotopes , China
5.
Nat Commun ; 10(1): 1958, 2019 04 29.
Article in English | MEDLINE | ID: mdl-31036861

ABSTRACT

The complicity of long-term land surface temperature (LST) changes has been under investigated and less understood, hindering our understanding of the history and mechanism of terrestrial climate change. Here, we report the longest (800 thousand years) LSTs based on distributions of soil fossil bacterial glycerol dialkyl glycerol tetraethers preserved in well-dated loess-paleosol sequences at the center of the Chinese Loess Plateau. We have found a previously-unrecognized increasing early and prolonged warming pattern toward the northwestern plateau at the onset of the past seven deglaciations, corresponding to the decrease in vegetation coverage, suggesting underlying surface vegetation or lack of has played an important role in regulating LSTs, superimposed on the fundamental global glacial-interglacial changes. Our results support that LSTs in semi-humid and semi-arid regions with little vegetation will be more sensitive to the anticipated global temperature rise, while improving vegetation coverage would reduce LSTs and thus ecological impacts.


Subject(s)
Ecosystem , Soil , Climate Change , Temperature
6.
Proc Natl Acad Sci U S A ; 111(46): 16292-6, 2014 Nov 18.
Article in English | MEDLINE | ID: mdl-25368156

ABSTRACT

The Tibetan Plateau uplift and Cenozoic global cooling are thought to induce enhanced aridification in the Asian interior. Although the onset of Asian desertification is proposed to have started in the earliest Miocene, prevailing desert environment in the Tarim Basin, currently providing much of the Asian eolian dust sources, is only a geologically recent phenomenon. Here we report episodic occurrences of lacustrine environments during the Late Miocene and investigate how the episodic lakes vanished in the basin. Our oxygen isotopic (δ(18)O) record demonstrates that before the prevailing desert environment, episodic changes frequently alternating between lacustrine and fluvial-eolian environments can be linked to orbital variations. Wetter lacustrine phases generally corresponded to periods of high eccentricity and possibly high obliquity, and vice versa, suggesting a temperature control on the regional moisture level on orbital timescales. Boron isotopic (δ(11)B) and δ(18)O records, together with other geochemical indicators, consistently show that the episodic lakes finally dried up at ∼4.9 million years ago (Ma), permanently and irreversibly. Although the episodic occurrences of lakes appear to be linked to orbitally induced global climatic changes, the plateau (Tibetan, Pamir, and Tianshan) uplift was primarily responsible for the final vanishing of the episodic lakes in the Tarim Basin, occurring at a relatively warm, stable climate period.

7.
Front Microbiol ; 4: 312, 2013.
Article in English | MEDLINE | ID: mdl-24194734

ABSTRACT

In culture experiments and many low temperature environments, the distribution of isoprenoid glycerol dialkyl glycerol tetraethers (GDGTs) commonly shows a strong correlation with temperature; however, this is often not the case in hot springs. We studied 26 hot springs in Yunnan, China, in order to determine whether temperature or other factors control the distribution of GDGTs in these environments. The hot springs ranged in temperature from 39.0 to 94.0°C, and in pH from 2.35 to 9.11. Water chemistry including nitrogen-, sulfur-, and iron species was also determined. Lipids from the samples were analyzed using liquid chromatography-mass spectrometry (LC-MS). Distributions of GDGTs in these hot springs were examined using cluster analysis, which resulted in two major groups. Group 1 was characterized by the lack of dominance of any individual GDGTs, while Group 2 was defined by the dominance of GDGT-0 or thaumarchaeol. Temperature was the main control on GDGT distribution in Group 1, whereas pH played an important role in the distribution of GDGTs in Group 2. However, no correlations were found between the distribution of GDGTs and any of the nitrogen-, sulfur-, or iron species. Results of this study indicate the dominance of temperature or pH control on archaeal lipid distribution, which can be better evaluated in the context of lipid classification.

8.
Front Microbiol ; 4: 329, 2013.
Article in English | MEDLINE | ID: mdl-24273535

ABSTRACT

All known ammonia-oxidizing archaea (AOA) belong to the phylum Thaumarchaeota within the domain Archaea. AOA possess the diagnostic amoA gene (encoding the alpha subunit of ammonia monooxygenase) and produce lipid biomarker thaumarchaeol. Although the abundance and diversity of amoA gene-encoding archaea (AEA) in freshwater lakes have been well-studied, little is known about AEA ecology in saline/hypersaline lakes. In this study, the distribution of the archaeal amoA gene and thaumarchaeol were investigated in nine Qinghai-Tibetan lakes with a salinity range from freshwater to salt-saturation (salinity: 325 g L(-) (1)). The results showed that the archaeal amoA gene was present in hypersaline lakes with salinity up to 160 g L(-) (1). The archaeal amoA gene diversity in Tibetan lakes was different from those in other lakes worldwide, suggesting Tibetan lakes (high elevation, strong ultraviolet, and dry climate) may host a unique AEA population of different evolutionary origin from those in other lakes. Thaumarchaeol was present in all of the studied hypersaline lakes, even in those where no AEA amoA gene was observed. Future research is needed to determine the ecological function of AEA and possible sources of thaumarchaeol in the Qinghai-Tibetan hypersaline lakes.

SELECTION OF CITATIONS
SEARCH DETAIL
...