Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Bioeng Biotechnol ; 10: 949724, 2022.
Article in English | MEDLINE | ID: mdl-36091443

ABSTRACT

As a new cell-free therapy, exosomes have provided new ideas for the treatment of various diseases. Human induced pluripotent stem cells (hiPSCs) cannot be used in clinical trials because of tumorigenicity, but the exosomes derived from hiPSCs may combine the advantages of iPSC pluripotency and the nanoscale size of exosomes while avoiding tumorigenicity. Currently, the safety and biodistribution of hiPSC-exosomes in vivo are unclear. Here, we investigated the effects of hiPSC-exosomes on hemolysis, DNA damage, and cytotoxicity through cell experiments. We also explored the safety of vein injection of hiPSC-exosomes in rabbits and rats. Differences in organ distribution after nasal administration were compared in normal and Parkinson's disease model mice. This study may provide support for clinical therapy and research of intravenous and nasal administration of hiPSC-exosomes.

2.
Bioanalysis ; 14(24): 1547-1561, 2022 Dec.
Article in English | MEDLINE | ID: mdl-36734464

ABSTRACT

Background: Extracellular vesicles (EVs) are important carriers of intercellular communication, used in disease diagnosis and as prognostic circulating biomarkers, and their identification and quantitative analysis are important prerequisites for their clinical application. Methods & results: A method using microchip electrophoresis with contactless conductivity detection was developed for the concentration assay of EVs. This method showed good sensitivity, reproducibility and accuracy, with good linear correlation with conventional methods (nanoparticle tracking analysis and bicinchoninic acid assay). The application to the detection of mesenchymal stem cell-derived EVs proved its applicability to clinical samples. Conclusion: This is the first study to apply this method for the detection of EVs, achieving quantitative analysis of EVs enriched in exosomes and microvesicles, and initially demonstrating the potential to separate different EV subpopulations.


Subject(s)
Cell-Derived Microparticles , Electrophoresis, Microchip , Exosomes , Extracellular Vesicles , Reproducibility of Results
SELECTION OF CITATIONS
SEARCH DETAIL
...