Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
Add more filters










Publication year range
1.
Nano Lett ; 24(5): 1673-1678, 2024 Feb 07.
Article in English | MEDLINE | ID: mdl-38270626

ABSTRACT

The continuous solid-electrolyte interphase (SEI) accumulation has been blamed for the rapid capacity loss of carbon anodes in Na and K ethylene carbonate (EC)/diethyl carbonate (DEC) electrolytes, but the understanding of the SEI composition and its formation chemistry remains incomplete. Here, we explain this SEI accumulation as the continuous production of organic species in solution-phase reactions. By comparing the NMR spectra of SEIs and model compounds we synthesized, alkali metal ethyl carbonate (MEC, M = Na or K), long-chain alkali metal ethylene carbonate (LCMEC, M = Na or K), and poly(ethylene oxide) (PEO) oligomers with ethyl carbonate ending groups are identified in Na and K SEIs. These components can be continuously generated in a series of solution-phase nucleophilic reactions triggered by ethoxides. Compared with the Li SEI formation chemistry, the enhancement of the nucleophilicity of an intermediate should be the cause of continuous nucleophilic reactions in the Na and K cases.

2.
Nano Lett ; 22(15): 6359-6365, 2022 Aug 10.
Article in English | MEDLINE | ID: mdl-35914192

ABSTRACT

Fast-charging sodium ion batteries remain deeply challenged by the lack of suitable carbonaceous anodes that exhibit intercalation plateau with fast kinetics. Here we develop a few-layer graphitic carbon with nanoscale architecture, which enables shortened Na+ ion diffusion path and fast formation of fully intercalated phase at the same time. Combined in situ Raman and electrochemical test reveal that this graphitic carbon with highly crystalline few layers follows surface-controlled intercalation rather than typical diffusion-controlled kinetics observed in natural graphite. As a result, a few-layer graphitic carbon anode maintains the reversible capacity of 106 mAh g-1 at 10 A g-1 and achieves 87% capacity retention even after 10 000 cycles at 1 A g-1. This work provides new insight on the Na storage mechanism in fast-charging graphitic carbon as well as the design of carbon anodes for high-rate sodium ion batteries.

3.
ACS Nano ; 16(8): 12511-12519, 2022 Aug 23.
Article in English | MEDLINE | ID: mdl-35943345

ABSTRACT

Graphite is the most commonly used anode material for not only commercialized lithium-ion batteries (LIBs) but also the emerging potassium-ion batteries (PIBs). However, the graphite anode in PIBs using traditional dilute ester-based electrolyte systems shows obvious capacity fading, which is in contrast with the extraordinary cyclic stability in LIBs. More interestingly, the graphite in concentrated electrolytes for PIBs exhibits outstanding cyclic stability. Unfortunately, this significant difference in cycling performance has not raised concern up to now. In this work, by comparing the cyclic stability and graphitization degree of the graphite anode upon cycling, we reveal that the underlying mechanism of the capacity fading of the graphite anode in PIBs is not the larger volume expansion of graphite caused by the intercalation of potassium ions but the continual accumulation of the solid electrolyte interphase (SEI) on the surface of graphite. By X-ray photoelectron and nuclear magnetic resonance spectroscopies combined with chemical synthesis, it is concluded that the accumulation of the SEI may mainly come from the continual deposition of a kind of oligomer component, which blocks intercalation and deintercalation of potassium ions in graphite anodes. The designed SEI-cleaning experiment further verifies the above conclusion. This finding clarifies the crucial factor determining the cyclic stability of graphite and provides scientific guidance for application of the graphite anode for PIBs.

4.
Sensors (Basel) ; 22(13)2022 Jun 29.
Article in English | MEDLINE | ID: mdl-35808399

ABSTRACT

High frequency wireless communication aims to provide ultra high-speed transmissions for various application scenarios. The waveform design for high frequency communication is challenging due to the requirements for high spectrum efficiency, as well as good hardware compatibility. With high flexibility and low peak-to-average power ratio (PAPR), discrete Fourier transformation spreading-based orthogonal frequency division multiplexing (DFT-s-OFDM) can be a promising candidate waveform. To further enhance the spectral efficiency, we integrate faster-than-Nyquist (FTN) signaling in DFT-s-OFDM, and find that the PAPR performance can also be improved. While FTN can introduce increased inter-symbol interference (ISI), in this paper, we deploy an isotropic orthogonal transform algorithm (IOTA) filter for FTN-enhanced DFT-s-OFDM, where the compact time-frequency structure of the IOTA filter can significantly reduce the ISI. Simulation results show that the proposed waveform is capable of achieving good performance in PAPR, bit error rate (BER) and throughput, simultaneously, with 3.5 dB gain in PAPR and 50% gain in throughput.

5.
ACS Appl Mater Interfaces ; 13(45): 54079-54087, 2021 Nov 17.
Article in English | MEDLINE | ID: mdl-34726913

ABSTRACT

Prussian blue (PB) is a very promising cathode for K-ion batteries but its low electronic conductivity and deficiencies in the framework aggravate electrochemical performances. Compositing with conductive reduced graphene oxide (rGO) is an effective solution to address this problem. Nevertheless, little attention was paid to the loss of oxygen-containing functional groups on the rGO substrate during the compositing process, which weakens the interaction between PB and rGO and leads to poor electrochemical performance of PB/rGO. Herein, this interaction effect associated with surface functional groups is first openly debated. Two commonly used carbon substrates, graphene oxide (GO) and rGO, are investigated. A more stable interaction between PB and GO contributes to a higher capacity retention (91.8%) than that of PB/rGO (69.7%) after 300 cycles at a current density of 5 C. Meanwhile, polyvinylpyrrolidone (PVP) is employed to repair the weak interaction between PB and rGO substrates. PB is anchored to the rGO surface through the stable covalent linking of amide groups in PVP. A superior rate capability of 72 mA h g-1 at 10 C and an improved capacity retention of 96.5% over 800 cycles at 5 C are obtained by as-prepared PB/PVP-rGO. This study provides a deeper understanding of fabricating PB/carbon composites with a robust connection.

6.
Chem Commun (Camb) ; 57(8): 1034-1037, 2021 Feb 01.
Article in English | MEDLINE | ID: mdl-33409518

ABSTRACT

We report a highly concentrated electrolyte consisting of 4 M potassium bis(fluorosulfonyl)imide (KFSI) in diethylene glycol dimethyl ether (DEGDME). This new electrolyte enables stable cycling of K metal anodes with a high CE (over 98% over 400 cycles), and excellent capacity retention (99.7% after 500 cycles) of K||potassium Prussian blue (KPB) batteries.

7.
ACS Appl Mater Interfaces ; 12(33): 37027-37033, 2020 Aug 19.
Article in English | MEDLINE | ID: mdl-32814396

ABSTRACT

Nowadays, alkali metal-oxygen batteries such as Li-, Na-, and K-O2 batteries have been investigated extensively because of their ultrahigh energy density. However, the oxygen crossover of oxygen batteries and the intrinsic drawbacks of the metal anodes (i.e., large volume changes and dendrite issues) have still been unsolved key problems. Here, we demonstrate a novel design of the K-ion oxygen battery using a graphite intercalation composite as the anode in a highly concentrated ether-based electrolyte. Instead of the metal K anode, the potassium graphite intercalation compound as the anode is depotassiated/potassiated in a binary form below 0.3 V (vs. K+/K); correspondingly, the discharged product KO2 is formed/decomposed at the carbon nanotube cathode, and an all-carbon full cell exhibits impressive cycling stability with a working voltage of 2.0 V. Furthermore, the utilization of graphite intercalation chemistry has been demonstrated to be applicable in Li-O2 batteries as well. Therefore, this study may provide a new strategy to resolve the key problems of the alkali metal-oxygen batteries.

8.
Chem Commun (Camb) ; 55(83): 12555-12558, 2019 Oct 15.
Article in English | MEDLINE | ID: mdl-31576844

ABSTRACT

A facile, low-cost precipitation method, utilizing an autogenously protective atmosphere without the assistance of an inert atmosphere, is proposed to synthesize nano-sized Prussian white K1.62Fe[Fe(CN)6]0.92·0.33H2O. The cathode delivers a high capacity of 120.9 mA h g-1 at 50 mA g-1 and an ultrahigh capacity retention of 98.2% after 100 cycles.

9.
ACS Appl Mater Interfaces ; 10(20): 17156-17166, 2018 May 23.
Article in English | MEDLINE | ID: mdl-29719955

ABSTRACT

Understanding the electrochemical property of superoxides in alkali metal oxygen batteries is critical for the design of a stable oxygen battery with high capacity and long cycle performance. In this work, a KO2-decorated binder-free cathode is fabricated by a simple and efficient electrochemical strategy. KO2 nanoparticles are uniformly coated on the carbon nanotube film (CNT-f) through a controllable discharge process in the K-O2 battery, and the KO2-decorated CNT-f is innovatively introduced into the Li-O2 battery as the O2 diffusion electrode. The Li-O2 battery based on the KO2-decorated CNT-f cathode can deliver enhanced discharge capacity, reduced charge overpotential, and more stable cycle performance compared with the battery in the absence of KO2. In situ formed KO2 particles on the surface of CNT-f cathode assist to form Li2O2 nanosheets in the Li-O2 battery, which contributes to the improvement of discharge capacity and cycle life. Interestingly, the analysis of KO2-decorated CNT-f cathodes, after discharge and cycle tests, reveals that the electrochemically synthesized KO2 seems not a conventional electrocatalyst but a partially dissolvable and decomposable promoter in Li-O2 batteries.

10.
ACS Appl Mater Interfaces ; 10(9): 7989-7995, 2018 Mar 07.
Article in English | MEDLINE | ID: mdl-29461029

ABSTRACT

The formation of the insulated film-like discharge products (Li2O2) on the surface of the carbon cathode gradually hinders the oxygen reduction reaction (ORR) process, which usually leads to the premature death of the Li-O2 battery. In this work, by introducing the molecular sieve powder into the ether electrolyte, the Li-O2 battery exhibits a largely improved discharge capacity (63 times) compared with the one in the absence of this inorganic oxide additive. Meanwhile, XRD and SEM results qualitatively demonstrate the generation of the toroid Li2O2 as the dominated discharge products, and the chemical titration quantifies a higher yield of the Li2O2 with the presence of the molecular sieve additive. The addition of the molecular sieve controls the amount of the free water in the electrolyte, which distinguishes the effect of the molecular sieve and the free water on the discharge process. Hence, a possible mechanism has been proposed that the adsorption of the molecular sieves toward the soluble lithium superoxides improves the disproportionation of the lithium superoxides and consequently enhances the solution-growth of the lithium peroxides in the low donor number ether electrolyte. In general, the application of the molecular sieve triggers further studies concerning the improvement of the discharge performance in the Li-O2 battery by adding the inorganic additives.

SELECTION OF CITATIONS
SEARCH DETAIL
...