Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 1 de 1
Filter
Add more filters










Database
Language
Publication year range
1.
Int J Cardiol Heart Vasc ; 36: 100852, 2021 Oct.
Article in English | MEDLINE | ID: mdl-34401470

ABSTRACT

BACKGROUND: Studies of insulin-like growth factor 1 (IGF-1) as a novel therapy for the treatment of cardiovascular diseases have proven promising. However, elevated IGF-1 levels have also been associated with poor patient outcomes in heart failure with reduced ejection fraction. IGF-1 therapy has additionally been shown to not be beneficial in the percutaneous coronary intervention setting. Although IGF-1 activation of the PI3K/Akt and ERK1/2 pathways have been demonstrated as cardioprotective, other cellular mechanisms have not been fully investigated. METHODS: Neonatal rat cardiac myocytes (NCMs) and fibroblasts (NCFs) were isolated from 1 to 2-day old pups using enzymatic digestion. NCMs and NCFs were pre-treated with IGF binding protein 6, inhibitors for the PI3K/Akt Wortmannin, ERK1/2 U0126, Rho Associated Protein Kinase (ROCK) GSK576371, Apoptosis Signal-regulating Kinase-1 (ASK-1) G2261818A, and p38MAPK RWJ67657 pathways before stimulation with IGF-1 for 62 and 50 h, respectively. Cardiac myocyte hypertrophy and fibroblast collagen synthesis were determined by 3H-leucine and 3H-proline incorporation, respectively. RESULTS: IGF-1 dose-dependently stimulated NCM hypertrophy and NCF collagen synthesis.Treatment with IGFBP6 and the kinase inhibitors, Wortmannin, U0126, GSK576371, G2261818A and RWJ67657 significantly inhibited IGF-1 stimulated NCM hypertrophy and NCF collagen synthesis. CONCLUSION: This study is the first to demonstrate that IGF-1 treatment in NCMs and NCFs activates the ROCK, ASK-1 and p38MAPK pathways. Future research may be guided by consideration of the PI3K/Akt and ERK1/2 pathways potentially increasing collagen synthesis, and the utilisation of a biased agonist to reduce activation of the ROCK, ASK-1 and p38MAPK pathways to maximise cardioprotective benefit whilst mitigating risks.

SELECTION OF CITATIONS
SEARCH DETAIL
...