Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Front Aging ; 3: 924957, 2022.
Article in English | MEDLINE | ID: mdl-35935727

ABSTRACT

Mifepristone dramatically increases the life span of mated female Drosophila while reducing the expression of innate immune response genes. Previous results indicated that mifepristone also reduced the load of aero-tolerant bacteria in mated females. Experiments were conducted to further investigate the possible role of bacteria in mifepristone life span effects. Life span was assayed in flies grown from sterilized eggs on autoclaved media and in normally cultured controls in two independent assays. Sterilization increased mated female life span (+8.3% and +57%, respectively), and the effect of mifepristone was additive (+53% and +93%, respectively). High-throughput sequencing of 16S sequences revealed that sterilization reduced the abundance of multiple species and the classes Bacteroidia, Bacilli, Actinobacteria, and Cytophagia. By contrast, mifepristone caused no decreases and instead increased the abundance of three species. Five aero-tolerant bacterial species were cultured from extracts of mated female flies, including both Gram-positive and Gram-negative species (Acetobacter sicerae, Enterococcus faecalis, Lactobacillus plantarum, Serratia rubidea, and Paenibacillus glucanolyticus). There was no detectable effect of mifepristone on the growth of these bacteria in vitro, indicating that mifepristone does not have a direct antibiotic effect. To test if antibiotics could mimic the effects of mifepristone in vivo, mated female flies were treated throughout adult life span with high concentrations of the individual antibiotics doxycycline, ampicillin, kanamycin, and streptomycin, in replicate experiments. No significant effect on life span was observed for ampicillin, kanamycin, or streptomycin, and an inconsistent benefit was observed for doxycycline. Finally, supplementation of media with Enterococcus faecalis did not alter adult female life span in the presence or absence of mifepristone. Taken together, the results indicate the life span benefits of mifepristone are not due to an antibiotic effect.

2.
J Gerontol A Biol Sci Med Sci ; 76(2): 195-204, 2021 01 18.
Article in English | MEDLINE | ID: mdl-32648907

ABSTRACT

Mating and transfer of male sex peptide (SP), or transgenic expression of SP, causes inflammation and decreased life span in female Drosophila. Mifepristone rescues these effects, yielding dramatic increases in life span. Here targeted metabolomics data were integrated with further analysis of extant transcriptomic data. Each of 7 genes positively correlated with life span were expressed in the brain or eye and involved regulation of gene expression and signaling. Genes negatively correlated with life span were preferentially expressed in midgut and involved protein degradation, amino acid metabolism, and immune response. Across all conditions, life span was positively correlated with muscle breakdown product 1/3-methylhistidine and purine breakdown product urate, and negatively correlated with tryptophan breakdown product kynurenic acid, suggesting a SP-induced shift from somatic maintenance/turnover pathways to the costly production of energy and lipids from dietary amino acids. Some limited overlap was observed between genes regulated by mifepristone and genes known to be regulated by ecdysone; however, mifepristone was unable to compete with ecdysone for activation of an ecdysone-responsive transgenic reporter. In contrast, genes regulated by mifepristone were highly enriched for genes regulated by juvenile hormone (JH), and mifepristone rescued the negative effect of JH analog methoprene on life span in adult virgin females. The data indicate that mifepristone increases life span and decreases inflammation in mated females by antagonizing JH signaling downstream of male SP. Finally, mifepristone increased life span of mated, but not unmated, Caenorhabditis elegans, in 2 of 3 trials, suggesting possible evolutionary conservation of mifepristone mechanisms.


Subject(s)
Drosophila melanogaster/metabolism , Longevity/physiology , Animals , Animals, Genetically Modified , Caenorhabditis elegans/drug effects , Caenorhabditis elegans/physiology , Drosophila Proteins/genetics , Drosophila Proteins/physiology , Drosophila melanogaster/drug effects , Drosophila melanogaster/genetics , Ecdysone/metabolism , Female , Gene Expression Regulation/drug effects , Genes, Insect , Hormone Antagonists/pharmacology , Intercellular Signaling Peptides and Proteins/genetics , Intercellular Signaling Peptides and Proteins/physiology , Juvenile Hormones/metabolism , Longevity/drug effects , Longevity/genetics , Male , Methoprene/pharmacology , Mifepristone/pharmacology , Sexual Behavior, Animal/physiology , Signal Transduction/drug effects
SELECTION OF CITATIONS
SEARCH DETAIL
...