Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 12 de 12
Filter
Add more filters










Publication year range
1.
J Sci Educ Technol ; 31(3): 303-321, 2022.
Article in English | MEDLINE | ID: mdl-35132301

ABSTRACT

As students transition into tertiary blended learning environments, their digital literacy in terms of technical capabilities have potential to impact on their access to digital resources. The first foundational year of STEM degrees includes compulsory courses across a broad range of scientific areas, each of which incorporates online technology in a discipline-specific manner. Given the diversity of online resources that STEM students need to access across their first-year coursework, this study applies learning analytical methods to determine whether students' perceived level of digital literacy has an effect on their navigation of learning management systems (LMS) and overall academic performance. The frequency and nature of LMS interactivity were examined across four first-year STEM courses offered in the same semester at a single institution, using a K-means cluster analysis to group student responses. It was observed that high achieving students accessed LMS resources more frequently than mid or low-achieving students across all four STEM courses. Students' perceived level of digital literacy was collected via survey (n = 282), and students were sorted high (n = 106) and low-level (n = 176) of perceived digital literacy-HDL and LDL, respectively. HDL students were not consistently found in the high-achieving academic group and did not perform better in their overall grade when compared to LDL students. LDL students were observed to perform better in specific online assessment tasks, which may be attributed to their increased frequency of LMS interactivity. These findings highlight the delicate balance between students' perceived level of digital literacy, motivation for engaging with online learning environments, and academic performance.

2.
FEMS Microbiol Lett ; 365(20)2018 10 01.
Article in English | MEDLINE | ID: mdl-30239690

ABSTRACT

The American Society for Microbiology's curricular guidelines for Introductory Microbiology highlighted key laboratory skills in the isolation, visualization and identification of microorganisms as core learning objectives in the discipline. Since the publication of these guidelines in 2012, there has been a paucity of diagnostic assessment tools in the literature that can be used to assess competencies in the microbiology laboratory. This project aimed to establish a laboratory competency examination for introductory microbiology, with tasks specifically aligned to laboratory skills and learning outcomes outlined in curricular guidelines for microbiology. A Laboratory Competency Examination assessing student skills in light microscopy, Gram-staining, pure culture, aseptic technique, serial dilution, dilution calculations and pipetting was developed at The University of Queensland, Australia. The Laboratory Competency Examination was field-tested in a large introductory microbiology subject (∼400 students), and student performance and learning gains data were collected from 2016 to 2017 to evaluate the validity of the assessment. The resulting laboratory assessment is presented as an endpoint diagnostic tool for assessing laboratory competency that can be readily adapted towards different educational contexts.


Subject(s)
Curriculum/standards , Microbiology/education , Professional Competence/standards , Queensland , Students, Medical
3.
Article in English | MEDLINE | ID: mdl-29904520

ABSTRACT

Science communication is a skill set to be developed through ongoing interactions with different stakeholders across a variety of platforms. Opportunities to engage the general public are typically reserved for senior scientists, but the use of social media in science communication allows all scientists to instantaneously disseminate their findings and interact with online users. The Communication Ambassador program is a social media initiative launched by the Australian Society for Microbiology to expand the online presence and science communication portfolios of early-career scientists. Through their participation in the program, a rotating roster of Australian microbiologists have broadened the online reach of the Society's social media channels as well as their own professional networks by attending and live-tweeting microbiology events throughout the year. We present the Communication Ambassador program as a case study of coordinated social media activity in science communication to the general public, and describe the potential for its applications in science education and training.

4.
Biochem Mol Biol Educ ; 46(3): 213-222, 2018 05.
Article in English | MEDLINE | ID: mdl-29383870

ABSTRACT

Course-integrated Undergraduate Research Experiences (CUREs) involve large numbers of students in real research. We describe a late-year microbiology CURE in which students use yeast to address a research question around beer brewing or synthesizing biofuel; the interdisciplinary student-designed project incorporates genetics, bioinformatics, biochemistry, analytical chemistry, and microbiology. Students perceived significant learning gains around multiple technical and "becoming a scientist" aspects of the project. The project is demanding for both the students and the academic implementers. We examine the rich landscape of support and interaction that this CURE both encourages and requires while also considering how we can support the exercise better and more sustainably. The findings from this study provide a picture of a CURE implementation that has begun to reach the limits of both the students' and the academics' capacities to complete it. © 2018 by The International Union of Biochemistry and Molecular Biology, 46(3):213-222, 2018.


Subject(s)
Beer/analysis , Biofuels/analysis , Educational Measurement , Laboratories , Problem-Based Learning , Research/education , Saccharomyces cerevisiae/metabolism , Humans , Students , Universities
5.
FEMS Microbiol Lett ; 364(15)2017 08 15.
Article in English | MEDLINE | ID: mdl-28859321

ABSTRACT

Inquiry-driven learning, research internships and course-based undergraduate research experiences all represent mechanisms through which educators can engage undergraduate students in scientific research. In life sciences education, the benefits of undergraduate research have been thoroughly evaluated, but limitations in infrastructure and training can prevent widespread uptake of these practices. It is not clear how faculty members can integrate complex laboratory techniques and equipment into their unique context, while finding the time and resources to implement undergraduate research according to best practice guidelines. This review will go through the trends and patterns in inquiry-based undergraduate life science projects with particular emphasis on molecular biosciences-the research-aligned disciplines of biochemistry, molecular cell biology, microbiology, and genomics and bioinformatics. This will provide instructors with an overview of the model organisms, laboratory techniques and research questions that are adaptable for semester-long projects, and serve as starting guidelines for course-based undergraduate research.


Subject(s)
Biological Science Disciplines/education , Curriculum , Research , Biological Science Disciplines/trends , Computational Biology/education , Computational Biology/trends , Faculty , Genomics/education , Genomics/trends , Humans , Molecular Biology/trends , Research/education , Research/statistics & numerical data , Research/trends
6.
J Microbiol Biol Educ ; 16(1): 50-60, 2015 May.
Article in English | MEDLINE | ID: mdl-25949757

ABSTRACT

Clinical microbiology testing is crucial for the diagnosis and treatment of community and hospital-acquired infections. Laboratory scientists need to utilize technical and problem-solving skills to select from a wide array of microbial identification techniques. The inquiry-driven laboratory training required to prepare microbiology graduates for this professional environment can be difficult to replicate within undergraduate curricula, especially in courses that accommodate large student cohorts. We aimed to improve undergraduate scientific training by engaging hundreds of introductory microbiology students in an Authentic Large-Scale Undergraduate Research Experience (ALURE). The ALURE aimed to characterize the microorganisms that reside in the healthy human oral cavity-the oral microbiome-by analyzing hundreds of samples obtained from student volunteers within the course. Students were able to choose from selective and differential culture media, Gram-staining, microscopy, as well as polymerase chain reaction (PCR) and 16S rRNA gene sequencing techniques, in order to collect, analyze, and interpret novel data to determine the collective oral microbiome of the student cohort. Pre- and postsurvey analysis of student learning gains across two iterations of the course (2012-2013) revealed significantly higher student confidence in laboratory skills following the completion of the ALURE (p < 0.05 using the Mann-Whitney U-test). Learning objectives on effective scientific communication were also met through effective student performance in laboratory reports describing the research outcomes of the project. The integration of undergraduate research in clinical microbiology has the capacity to deliver authentic research experiences and improve scientific training for large cohorts of undergraduate students.

7.
MethodsX ; 1: 36-41, 2014.
Article in English | MEDLINE | ID: mdl-26150932

ABSTRACT

In contrast to phagocytosis, macropinocytosis is not directly initiated by interactions between cell surface receptors and cargo ligands, but is a result of constitutive membrane ruffling driven by dynamic remodelling of cortical actin cytoskeleton in response to stimulation of growth factor receptors. Wang et al. (2010) [13] developed a reliable assay that allows quantitative assessment of the efficiency and kinetics of macropinosome biogenesis and/or maturation in cells where the function of a targeted protein has been perturbed by pharmacological inhibitors or by knock-down or knock-out approaches. In this manuscript we describe a modified quantitative protocol to measure the rate and volume of fluid phase uptake in adherent cells. This assay:•uses fluorescent dextran, microscopy and semi-automated image analysis;•allows quantitation of macropinosomes within large numbers of individual cells;•can be applied also to non-homogenous cell populations including transiently transfected cell monolayers. We present the background necessary to consider when customising this protocol for application to new cell types or experimental variations.

8.
J Microbiol Biol Educ ; 14(1): 12-24, 2013.
Article in English | MEDLINE | ID: mdl-23858350

ABSTRACT

Designing and implementing assessment tasks in large-scale undergraduate science courses is a labor-intensive process subject to increasing scrutiny from students and quality assurance authorities alike. Recent pedagogical research has provided conceptual frameworks for teaching introductory undergraduate microbiology, but has yet to define best-practice assessment guidelines. This study assessed the applicability of Biggs' theory of constructive alignment in designing consistent learning objectives, activities, and assessment items that aligned with the American Society for Microbiology's concept-based microbiology curriculum in MICR2000, an introductory microbiology course offered at the University of Queensland, Australia. By improving the internal consistency in assessment criteria and increasing the number of assessment items explicitly aligned to the course learning objectives, the teaching team was able to efficiently provide adequate feedback on numerous assessment tasks throughout the semester, which contributed to improved student performance and learning gains. When comparing the constructively aligned 2011 offering of MICR2000 with its 2010 counterpart, students obtained higher marks in both coursework assignments and examinations as the semester progressed. Students also valued the additional feedback provided, as student rankings for course feedback provision increased in 2011 and assessment and feedback was identified as a key strength of MICR2000. By designing MICR2000 using constructive alignment and iterative assessment tasks that followed a common set of learning outcomes, the teaching team was able to effectively deliver detailed and timely feedback in a large introductory microbiology course. This study serves as a case study for how constructive alignment can be integrated into modern teaching practices for large-scale courses.

9.
PLoS One ; 5(10): e13763, 2010 Oct 29.
Article in English | MEDLINE | ID: mdl-21048941

ABSTRACT

BACKGROUND: Macropinocytosis is an actin-driven endocytic process, whereby membrane ruffles fold back onto the plasma membrane to form large (>0.2 µm in diameter) endocytic organelles called macropinosomes. Relative to other endocytic pathways, little is known about the molecular mechanisms involved in macropinocytosis. Recently, members of the Sorting Nexin (SNX) family have been localized to the cell surface and early macropinosomes, and implicated in macropinosome formation. SNX-PX-BAR proteins form a subset of the SNX family and their lipid-binding (PX) and membrane-curvature sensing (BAR) domain architecture further implicates their functional involvement in macropinosome formation. METHODOLOGY/PRINCIPAL FINDINGS: We exploited the tractability of macropinosomes through image-based screening and systematic overexpression of SNX-PX-BAR proteins to quantitate their effect on macropinosome formation. SNX1 (40.9+/-3.19 macropinosomes), SNX5 (36.99+/-4.48 macropinosomes), SNX9 (37.55+/-2.4 macropinosomes), SNX18 (88.2+/-8 macropinosomes), SNX33 (65.25+/-6.95 macropinosomes) all exhibited statistically significant (p<0.05) increases in average macropinosome numbers per 100 transfected cells as compared to control cells (24.44+/-1.81 macropinosomes). SNX1, SNX5, SNX9, and SNX18 were also found to associate with early-stage macropinosomes within 5 minutes following organelle formation. The modulation of intracellular PI(3,4,5)P(3) levels through overexpression of PTEN or a lipid phosphatase-deficient mutant PTEN(G129E) was also observed to significantly reduce or elevate macropinosome formation respectively; coexpression of PTEN(G129E) with SNX9 or SNX18 synergistically elevated macropinosome formation to 119.4+/-7.13 and 91.4+/-6.37 macropinosomes respectively (p<0.05). CONCLUSIONS/SIGNIFICANCE: SNX1, SNX5, SNX9, SNX18, and SNX33 were all found to elevate macropinosome formation and (with the exception of SNX33) associate with early-stage macropinosomes. Moreover the effects of SNX9 and SNX18 overexpression in elevating macropinocytosis is likely to be synergistic with the increase in PI(3,4,5)P(3) levels, which is known to accumulate on the cell surface and early-stage macropinocytic cups. Together these findings represent the first systematic functional study into the impact of the SNX-PX-BAR family on macropinocytosis.


Subject(s)
Pinocytosis , Proteins/metabolism , Protein Transport
10.
EMBO J ; 29(8): 1331-47, 2010 Apr 21.
Article in English | MEDLINE | ID: mdl-20300065

ABSTRACT

3-phosphorylated phosphoinositides (3-PtdIns) orchestrate endocytic trafficking pathways exploited by intracellular pathogens such as Salmonella to gain entry into the cell. To infect the host, Salmonellae subvert its normal macropinocytic activity, manipulating the process to generate an intracellular replicative niche. Disruption of the PtdIns(5) kinase, PIKfyve, be it by interfering mutant, siRNA-mediated knockdown or pharmacological means, inhibits the intracellular replication of Salmonella enterica serovar typhimurium in epithelial cells. Monitoring the dynamics of macropinocytosis by time-lapse 3D (4D) videomicroscopy revealed a new and essential role for PI(3,5)P(2) in macropinosome-late endosome/lysosome fusion, which is distinct from that of the small GTPase Rab7. This PI(3,5)P(2)-dependent step is required for the proper maturation of the Salmonella-containing vacuole (SCV) through the formation of Salmonella-induced filaments (SIFs) and for the engagement of the Salmonella pathogenicity island 2-encoded type 3 secretion system (SPI2-T3SS). Finally, although inhibition of PIKfyve in macrophages did inhibit Salmonella replication, it also appears to disrupt the macrophage's bactericidal response.


Subject(s)
Phosphatidylinositol 3-Kinases/metabolism , Phosphoinositide-3 Kinase Inhibitors , Salmonella typhimurium/pathogenicity , Aminopyridines/pharmacology , Animals , Bacterial Proteins/metabolism , Cell Line , Endocytosis , Endosomes/metabolism , Heterocyclic Compounds, 3-Ring/pharmacology , Humans , Lysosomes/metabolism , Macrophages/microbiology , Membrane Proteins/metabolism , Mutation , Phosphatidylinositol 3-Kinases/genetics , Pinocytosis , RNA Interference , Salmonella typhimurium/growth & development , Vacuoles/metabolism , rab GTP-Binding Proteins/metabolism , rab7 GTP-Binding Proteins
11.
BMC Bioinformatics ; 10: 94, 2009 Mar 22.
Article in English | MEDLINE | ID: mdl-19302715

ABSTRACT

BACKGROUND: Automated microscopy technologies have led to a rapid growth in imaging data on a scale comparable to that of the genomic revolution. High throughput screens are now being performed to determine the localisation of all of proteins in a proteome. Closer to the bench, large image sets of proteins in treated and untreated cells are being captured on a daily basis to determine function and interactions. Hence there is a need for new methodologies and protocols to test for difference in subcellular imaging both to remove bias and enable throughput. Here we introduce a novel method of statistical testing, and supporting software, to give a rigorous test for difference in imaging. We also outline the key questions and steps in establishing an analysis pipeline. RESULTS: The methodology is tested on a high throughput set of images of 10 subcellular localisations, and it is shown that the localisations may be distinguished to a statistically significant degree with as few as 12 images of each. Further, subtle changes in a protein's distribution between nocodazole treated and control experiments are shown to be detectable. The effect of outlier images is also examined and it is shown that while the significance of the test may be reduced by outliers this may be compensated for by utilising more images. Finally, the test is compared to previous work and shown to be more sensitive in detecting difference. The methodology has been implemented within the iCluster system for visualising and clustering bio-image sets. CONCLUSION: The aim here is to establish a methodology and protocol for testing for difference in subcellular imaging, and to provide tools to do so. While iCluster is applicable to moderate (<1000) size image sets, the statistical test is simple to implement and will readily be adapted to high throughput pipelines to provide more sensitive discrimination of difference.


Subject(s)
Computational Biology/methods , Image Processing, Computer-Assisted/methods , Organelles/ultrastructure , Algorithms , Imaging, Three-Dimensional , Software , User-Computer Interface
12.
BMC Cell Biol ; 9: 58, 2008 Oct 14.
Article in English | MEDLINE | ID: mdl-18854019

ABSTRACT

BACKGROUND: The mechanisms and components that regulate macropinocytosis are poorly understood. Here we have investigated the role of sorting nexin 5 (SNX5) in the regulation of macropinocytic activity. RESULTS: SNX5 is abundantly expressed in macrophages, cells very active in macropinocytosis, and is recruited onto newly-formed macropinosomes. LPS treatment of bone marrow-derived macrophages resulted in a 2.5 fold decrease in macropinosome formation that correlates with a reduction in the levels of SNX5. To investigate the relationship between SNX5 levels and macropinocytic activity we examined the formation of macropinosomes in HEK-FlpIn cells stably expressing GFP-SNX5. Constitutive macropinocytosis was increased approximately 2 fold in HEK-GFP-SNX5 cells compared with parental HEK-FlpIn cells. Furthermore, EGF stimulation resulted in a significant increase in macropinocytosis and there was also a 2.0 fold increase in the generation of macropinosomes in HEK-GFP-SNX5 cells compared with parental HEK-FlpIn cells. SNX5, which interacts specifically with PtdIns(3)P and PtdIns(3,4)P2 through its PX domain, was recruited to regions on the plasma membrane containing EGF receptor or positive for PtdIns(3,4)P2 as detected with the PH domain of TAPP1. Treatment with AG1478, an EGF receptor specific tyrosine kinase inhibitor, prevented the recruitment of SNX5 to the cytosolic face of the plasma membrane and inhibited the formation of macropinosomes in response to EGF treatment. CONCLUSION: Based on these data, we propose that SNX5 requires the generation of phosphoinositides for recruitment to the plasma membrane and, moreover, influences the level of macropinocytic activity.


Subject(s)
Carrier Proteins/metabolism , Macrophages/metabolism , Membrane Lipids/metabolism , Pinocytosis/physiology , Protein Transport/physiology , Vesicular Transport Proteins/metabolism , Animals , Carrier Proteins/genetics , Cell Line , Enzyme Inhibitors/pharmacology , Epidermal Growth Factor/metabolism , ErbB Receptors/antagonists & inhibitors , Intracellular Signaling Peptides and Proteins/metabolism , Lipopolysaccharides/metabolism , Macrophage Activation , Membrane Proteins/metabolism , Mice , Phosphatidylinositol Phosphates/metabolism , Pinocytosis/drug effects , Protein Transport/drug effects , Protein Tyrosine Phosphatases/antagonists & inhibitors , Quinazolines , Sorting Nexins , Transgenes/genetics , Tyrphostins/pharmacology , Vesicular Transport Proteins/genetics
SELECTION OF CITATIONS
SEARCH DETAIL
...