Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters











Database
Language
Publication year range
1.
Bioorg Med Chem Lett ; 21(21): 6545-53, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21924613

ABSTRACT

Fatty acid amide hydrolase (FAAH) is an integral membrane serine hydrolase responsible for the degradation of fatty acid amide signaling molecules such as endocannabinoid anandamide (AEA), which has been shown to possess cannabinoid-like analgesic properties. Herein we report the optimization of spirocyclic 7-azaspiro[3.5]nonane and 1-oxa-8-azaspiro[4.5]decane urea covalent inhibitors of FAAH. Using an iterative design and optimization strategy, lead compounds were identified with a remarkable reduction in molecular weight and favorable CNS drug like properties. 3,4-Dimethylisoxazole and 1-methyltetrazole were identified as superior urea moieties for this inhibitor class. A dual purpose in vivo efficacy and pharmacokinetic screen was designed to be the key decision enabling experiment affording the ability to move quickly from compound synthesis to selection of preclinical candidates. On the basis of the remarkable potency, selectivity, pharmacokinetic properties and in vivo efficacy, PF-04862853 (15p) was advanced as a clinical candidate.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Analgesics/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Pain/drug therapy , Spiro Compounds/pharmacology , Administration, Oral , Analgesics/administration & dosage , Analgesics/chemistry , Analgesics/therapeutic use , Animals , Aza Compounds/administration & dosage , Aza Compounds/chemistry , Aza Compounds/pharmacology , Aza Compounds/therapeutic use , Biological Availability , Chromatography, High Pressure Liquid , Drug Evaluation, Preclinical , Enzyme Inhibitors/administration & dosage , Enzyme Inhibitors/chemistry , Enzyme Inhibitors/therapeutic use , Rats , Spiro Compounds/administration & dosage , Spiro Compounds/chemistry , Spiro Compounds/therapeutic use
2.
Bioorg Med Chem Lett ; 21(21): 6538-44, 2011 Nov 01.
Article in English | MEDLINE | ID: mdl-21924614

ABSTRACT

Herein we report the identification of two new fatty acid amide hydrolase (FAAH) inhibitor lead series with FAAH k(inact)/K(i) potency values greater than 1500M(-1)s(-1). The two novel spirocyclic cores, 7-azaspiro[3.5]nonane and 1-oxa-8-azaspiro[4.5]decane, clearly distinguished themselves from the other spirocyclic cores on the basis of their superior potency for FAAH. Lead compounds from these two series have suitable FAAH potency and selectivity for additional medicinal chemistry optimization.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Aza Compounds/pharmacology , Drug Discovery , Enzyme Inhibitors/pharmacology , Spiro Compounds/pharmacology , Aza Compounds/chemistry , Enzyme Inhibitors/chemistry , Models, Molecular , Spiro Compounds/chemistry , Structure-Activity Relationship
3.
Bioorg Med Chem Lett ; 20(23): 7155-8, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-21055613

ABSTRACT

In this manuscript, we report the discovery of the substituted 2-trifluoromethyl-2H-benzopyran-3-carboxylic acids as a novel series of potent and selective cyclooxygenase-2 (COX-2) inhibitors. 5c-(S) (SD-8381) was advanced into clinical studies due to its superior in vivo potency. The high plasma protein binding (>99% bound) of 5c-(S) has resulted in a surprisingly long human half life t(1/2)=360 h.


Subject(s)
Benzopyrans/chemistry , Benzopyrans/pharmacokinetics , Cyclooxygenase 2 Inhibitors/chemistry , Blood Proteins/metabolism , Carboxylic Acids , Cyclooxygenase 2 Inhibitors/pharmacokinetics , Half-Life , Humans , Protein Binding , Structure-Activity Relationship
4.
Bioorg Med Chem Lett ; 20(23): 7159-63, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20709553

ABSTRACT

In this Letter, we provide the structure-activity relationships, optimization of design, testing criteria, and human half-life data for a series of selective COX-2 inhibitors. During the course of our structure-based drug design efforts, we discovered two distinct binding modes within the COX-2 active site for differently substituted members of this class. The challenge of a undesirably long human half-life for the first clinical candidate 1t(1/2)=360 h was addressed by multiple strategies, leading to the discovery of 29b-(S) (SC-75416) with t(1/2)=34 h.


Subject(s)
Benzopyrans/chemistry , Benzopyrans/pharmacokinetics , Cyclooxygenase 2 Inhibitors/pharmacokinetics , Binding Sites , Catalytic Domain , Cyclooxygenase 2 Inhibitors/chemistry , Half-Life , Humans , Structure-Activity Relationship
5.
Bioorg Med Chem Lett ; 20(23): 7164-8, 2010 Dec 01.
Article in English | MEDLINE | ID: mdl-20728356

ABSTRACT

In this manuscript, we report the discovery of the substituted 2-trifluoromethyl-2H-benzopyran-3-carboxylic acids as a novel series of potent and selective cyclooxygenase-2 (COX-2) inhibitors. We provide the structure-activity relationships, optimization of design, testing criteria, and human half-life data. The challenge of a surprisingly long half-life (t(1/2)=360 h) of the first clinical candidate 1 and human t(1/2) had been difficult to predict based on allometric scaling for this class of highly ppb compounds. We used a microdose strategy which led to the discovery of clinical agents 18c-(S), 29b-(S), and 34b-(S) with human half-life of 57, 13, and 11 h.


Subject(s)
Benzopyrans/pharmacokinetics , Cyclooxygenase 2 Inhibitors/chemistry , Drug Discovery/methods , Benzopyrans/chemistry , Carboxylic Acids , Cyclooxygenase 2 Inhibitors/pharmacokinetics , Dose-Response Relationship, Drug , Half-Life , Humans , Structure-Activity Relationship
6.
Biochem Pharmacol ; 79(10): 1445-54, 2010 May 15.
Article in English | MEDLINE | ID: mdl-20067770

ABSTRACT

Inflammation-induced microsomal prostaglandin E synthase-1 (mPGES-1) is the terminal enzyme that synthesizes prostaglandin E(2) (PGE(2)) downstream of cyclooxygenase-2 (COX-2). The efficacy of nonsteroidal anti-inflammatory drugs and COX-2 inhibitors in the treatment of the signs and symptoms of osteoarthritis, rheumatoid arthritis and inflammatory pain, largely attributed to the inhibition of PGE(2) synthesis, provides a rationale for exploring mPGES-1 inhibition as a potential novel therapy for these diseases. Toward this aim, we identified PF-9184 as a novel mPGES-1 inhibitor. PF-9184 potently inhibited recombinant human (rh) mPGES-1 (IC(50)=16.5+/-3.8nM), and had no effect against rhCOX-1 and rhCOX-2 (>6500-fold selectivity). In inflammation and clinically relevant biological systems, mPGES-1 expression, like COX-2 expression was induced in cell context- and time-dependent manner, consistent with the kinetics of PGE(2) synthesis. In rationally designed cell systems ideal for determining direct effects of the inhibitors on mPGES-1 function, but not its expression, PF-9184 inhibited PGE(2) synthesis (IC(50) in the range of 0.5-5 microM in serum-free cell and human whole blood cultures, respectively) while sparing the synthesis of 6-keto-PGF(1alpha) (PGF(1alpha)) and PGF(2alpha). In contrast, as expected, the selective COX-2 inhibitor, SC-236, inhibited PGE(2), PGF(1alpha) and PGF(2alpha) synthesis. This profile of mPGES-1 inhibition, distinct from COX-2 inhibition in cells, validates mPGES-1 as an attractive target for therapeutic intervention.


Subject(s)
Cyclic S-Oxides/antagonists & inhibitors , Cyclooxygenase 2 Inhibitors/pharmacology , Intramolecular Oxidoreductases/antagonists & inhibitors , Thiazines/antagonists & inhibitors , Animals , Arthritis, Rheumatoid/metabolism , Carrageenan/pharmacology , Cells, Cultured , Cyclooxygenase 2/biosynthesis , Cyclooxygenase 2/drug effects , Cyclooxygenase 2/metabolism , Fibroblasts/drug effects , Fibroblasts/enzymology , Gene Expression/drug effects , Humans , Immunoblotting , Interleukin-1beta/pharmacology , Intramolecular Oxidoreductases/biosynthesis , Intramolecular Oxidoreductases/metabolism , Microsomes/drug effects , Microsomes/enzymology , Prostaglandin-E Synthases , Rats , Reverse Transcriptase Polymerase Chain Reaction
7.
Bioorg Med Chem Lett ; 19(20): 5970-4, 2009 Oct 15.
Article in English | MEDLINE | ID: mdl-19765986

ABSTRACT

Fatty acid amide hydrolase (FAAH) has attracted significant attention due to its promise as an analgesic target. This has resulted in the discovery of numerous chemical classes as inhibitors of this potential therapeutic target. In this paper we disclose a new series of novel FAAH irreversible azetidine urea inhibitors. In general these compounds illustrate potent activity against the rat FAAH enzyme. Our SAR studies allowed us to optimize this series resulting in the identification of compounds 13 which were potent inhibitors of both human and rat enzyme. This series of compounds illustrated good hydrolase selectivity along with good PK properties.


Subject(s)
Amidohydrolases/antagonists & inhibitors , Analgesics/chemistry , Azetidines/chemistry , Enzyme Inhibitors/chemistry , Pyridazines/chemistry , Urea/chemistry , Amidohydrolases/metabolism , Analgesics/chemical synthesis , Analgesics/pharmacokinetics , Animals , Azetidines/chemical synthesis , Azetidines/pharmacokinetics , Binding Sites , Crystallography, X-Ray , Drug Design , Enzyme Inhibitors/chemical synthesis , Enzyme Inhibitors/pharmacokinetics , Humans , Pyridazines/chemical synthesis , Pyridazines/pharmacokinetics , Rats , Structure-Activity Relationship , Urea/chemical synthesis , Urea/pharmacokinetics
8.
J Med Chem ; 46(11): 2152-68, 2003 May 22.
Article in English | MEDLINE | ID: mdl-12747787

ABSTRACT

A novel series of substituted N-[3-(1,1,2,2-tetrafluoroethoxy)benzyl]-N-(3-phenoxyphenyl)-trifluoro-3-amino-2-propanols is described which potently and reversibly inhibit cholesteryl ester transfer protein (CETP). Starting from the initial lead 1, various substituents were introduced into the 3-phenoxyaniline group to optimize the relative activity for inhibition of the CETP-mediated transfer of [3H]-cholesteryl ester from HDL donor particles to LDL acceptor particles either in buffer or in human serum. The better inhibitors in the buffer assay clustered among compounds in which the phenoxy group was substituted at the 3, 4, or 5 positions. In general, small lipophilic alkyl, haloalkyl, haloalkoxy, and halogen moieties increased potency relative to 1, while analogues containing electron-donating or hydrogen bond accepting groups exhibited lower potency. Compounds with polar or strong electron-withdrawing groups also displayed lower potency. Replacement of the phenoxy ring in 1 with either simple aliphatic or cycloalkyl ethers as well as basic heteroaryloxy groups led to reduced potency. From the better compounds, a representative series 4a-i was prepared as the chirally pure R(+) enantiomers, and from these, the 4-chloro-3-ethylphenoxy analogue was identified as a potent inhibitor of CETP activity in buffer (4a, IC50 0.77 nM, 59 nM in human serum). The simple R(+) enantiomer 4a represents the most potent acyclic CETP inhibitor reported. The chiral synthesis and biochemical characterization of 4a are reported along with its preliminary pharmacological assessment in animals.


Subject(s)
Aniline Compounds/chemical synthesis , Carrier Proteins/antagonists & inhibitors , Cholesterol Esters/metabolism , Glycoproteins , Hypolipidemic Agents/chemical synthesis , Propanolamines/chemical synthesis , Administration, Oral , Aniline Compounds/pharmacokinetics , Aniline Compounds/pharmacology , Animals , Cholesterol Ester Transfer Proteins , Cholesterol Esters/blood , Cholesterol, HDL/blood , Cholesterol, LDL/blood , Cricetinae , Humans , Hypolipidemic Agents/pharmacokinetics , Hypolipidemic Agents/pharmacology , Lipoproteins , Mesocricetus , Mice , Mice, Inbred C57BL , Mice, Transgenic , Propanolamines/pharmacokinetics , Propanolamines/pharmacology , Stereoisomerism , Structure-Activity Relationship
9.
J Med Chem ; 45(18): 3891-904, 2002 Aug 29.
Article in English | MEDLINE | ID: mdl-12190312

ABSTRACT

A novel series of substituted N-benzyl-N-phenyl-trifluoro-3-amino-2-propanols are described that reversibly inhibit cholesteryl ester transfer protein (CETP). Starting with screening lead 22, various structural features were explored with respect to inhibition of the CETP-mediated transfer of [(3)H]cholesterol from high-density cholesterol donor particles to low-density cholesterol acceptor particles. The free hydroxyl group of the propanol was required for high potency, since acylation or alkylation reduced activity. High inhibitory potency was also associated with 3-ether moieties in the aniline ring, and the highest potencies were exhibited by 3-phenoxyaniline analogues. Activity was substantially reduced by oxidation or substitution in the methylene of the benzylic group, implying that the benzyl ring orientation was important for activity. In the benzylic group, substitution at the 3-position was preferred over either the 2- or the 4-positions. Highest potencies were observed with inhibitors in which the 3-benzylic substituent had the potential to adopt an out of plane orientation with respect to the phenyl ring. The best 3-benzylic substituents were OCF(2)CF(2)H (42, IC(50) 0.14 microM in buffer, 5.6 microM in human serum), cyclopentyl (39), 3-iso-propoxy (27), SCF(3) (67), and C(CF(3))(2)OH (36). Separation of 42 into its enantiomers unexpectedly showed that the minor R(+) enantiomer 1a was 40-fold more potent (IC(50) 0.02 microM in buffer, 0.6 microM in human serum) than the major S(-) enantiomer 1b, demonstrating that the R-chirality at the propanol 2-position is key to high potency in this series. The R(+) enantiomer 1a represents the first reported acyclic CETP inhibitor with submicromolar potency in plasma. A chiral synthesis of 1a is reported.


Subject(s)
Aniline Compounds/chemical synthesis , Carrier Proteins/chemical synthesis , Glycoproteins , Phenyl Ethers/chemical synthesis , Propanolamines/chemical synthesis , Aniline Compounds/pharmacokinetics , Aniline Compounds/pharmacology , Animals , Carrier Proteins/chemistry , Carrier Proteins/pharmacology , Cholesterol Ester Transfer Proteins , Combinatorial Chemistry Techniques , Cricetinae , Crystallography, X-Ray , Humans , Lipoproteins, HDL/blood , Lipoproteins, LDL/blood , Lipoproteins, VLDL/blood , Male , Mesocricetus , Mice , Mice, Inbred C57BL , Models, Molecular , Molecular Structure , Phenyl Ethers/pharmacokinetics , Phenyl Ethers/pharmacology , Propanolamines/chemistry , Propanolamines/pharmacology , Protein Binding , Serum Albumin/metabolism , Stereoisomerism , Structure-Activity Relationship
SELECTION OF CITATIONS
SEARCH DETAIL