Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Biochem Pharmacol ; 222: 116055, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38354959

ABSTRACT

Due to the emergence and spread of multidrug resistance in Helicobacter pylori (H. pylori), its eradication has become difficult. Sodium sulfite (SS), a widely used food additive for ensuring food safety and storage, has been recognized as an effective nonbactericidal agent for H. pylori eradication. However, the mechanism by which H. pylori adapts and eventually succumbs under low- or no-oxygen conditions remains unknown. In this study, we aimed to evaluate the anti-H. pylori effect of SS and investigated the multiomics mechanism by which SS kills H. pylori. The results demonstrated that SS effectively eradicated H. pylori both in vitro and in vivo. H. pylori responds to the oxygen changes regulated by SS, downregulates the HcpE gene, which is responsible for redox homeostasis in bacteria, decreases the activities of enzymes related to oxidative stress, and disrupts the outer membrane structure, increasing susceptibility to oxidative stress. Furthermore, SS downregulates the content of cytochrome C in the microaerobic respiratory chain, leading to a sharp decrease in ATP synthesis. Consequently, the accumulation of triglycerides (TGs) in bacteria due to oxidative stress supports anaerobic respiration, meeting their energy requirements. The multifaceted death of H. pylori caused by SS does not result in drug resistance. Thus, screening of the redox homeostasis of HcpE as a new target for H. pylori infection treatment could lead to the development of a novel approach for H. pylori eradication therapy.


Subject(s)
Helicobacter Infections , Helicobacter pylori , Sulfites , Humans , Anti-Bacterial Agents/pharmacology , Anti-Bacterial Agents/therapeutic use , Multiomics , Drug Therapy, Combination
2.
Mol Psychiatry ; 27(4): 1956-1962, 2022 04.
Article in English | MEDLINE | ID: mdl-35079124

ABSTRACT

Central immunity components especially microglia in dementia have been well studied and corresponding immunotherapy gradually caught the attention. However, few studies focused on peripheral immunity and dementia. To address the issue, we examined the longitudinal association between incident dementia and peripheral immunity markers encompassing immune cell counts, and their derived ratios including neutrophil-to-lymphocyte ratio (NLR), platelet-to-lymphocyte ratio (PLR), systemic immune-inflammation index (SII), and lymphocyte-to-monocyte ratio (LMR), utilizing data of 361,653 participants from the UK Biobank (UKB). During a median follow-up of 8.99 years, 4239 participants developed dementia. The results revealed that increased innate immunity markers were associated with higher dementia risk (per SD increment hazard ratio [HR]; 95% confidence interval [CI] 1.14; 1.09-1.19 for neutrophils, 1.16; 1.11-1.20 for NLR and 1.11; 1.07-1.16 for SII), while increased adaptive immunity markers were associated with lower dementia risk (0.93; 0.90-0.97 for lymphocytes and 0.94; 0.90-0.98 for LMR). Our study pinpoints the differential role of innate and adaptive immunity in dementia incidence, which may provide some new perspectives in etiology and therapy of dementia.


Subject(s)
Dementia , Lymphocytes , Biomarkers , Blood Platelets , Humans , Inflammation , Neutrophils , Retrospective Studies
SELECTION OF CITATIONS
SEARCH DETAIL
...