Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 15 de 15
Filter
Add more filters










Publication year range
1.
Plant Mol Biol ; 114(3): 37, 2024 Apr 11.
Article in English | MEDLINE | ID: mdl-38602592

ABSTRACT

Reactive oxygen species (ROS) is a chemically reactive chemical substance containing oxygen and a natural by-product of normal oxygen metabolism. Excessive ROS affect the growth process of crops, which will lead to the decrease of yield. Nitrogen, as a critical nutrient element in plants and plays a vital role in plant growth and crop production. Nitrate is the primary nitrogen source available to plants in agricultural soil and various natural environments. However, the molecular mechanism of ROS-nitrate crosstalk is still unclear. In this study, we used the foxtail millet (Setaria italica L.) as the material to figure it out. Here, we show that excessive NaCl inhibits nitrate-promoted plant growth and nitrogen use efficiency (NUE). NaCl induces ROS accumulation in roots, and ROS inhibits nitrate-induced gene expression in a short time. Surprisingly, low concentration ROS slight promotes and high concentration of ROS inhibits foxtail millet growth under long-term H2O2 treatment. These results may open a new perspective for further exploration of ROS-nitrate signaling pathway in plants.


Subject(s)
Nitrates , Setaria Plant , Reactive Oxygen Species , Nitrates/pharmacology , Setaria Plant/genetics , Hydrogen Peroxide , Sodium Chloride , Oxygen , Signal Transduction , Gene Expression Profiling , Nitrogen
2.
Plant Sci ; 341: 111998, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38307351

ABSTRACT

The production of excess and viable pollen grains is critical for reproductive success of flowering plants. Pollen grains are produced within anthers, the male reproductive organ whose development involves precisely controlled cell differentiation, division, and intercellular communication. In Arabidopsis thaliana, specification of an archesporial cell (AC) at four corners of a developing anther, followed by programmed cell divisions, generates four pollen sacs, walled by four cell layers among which the tapetum is in close contact with developing microspores. Tapetum secretes callose-dissolving enzymes to release microspores at early stages and undergoes programmed cell death (PCD) to deliver nutrients and signals for microspore development at later stages. Except for transcription factors, plasma membrane (PM)-associated and secretory peptides have also been demonstrated to mediate anther development. Adaptor protein complexes (AP) recruit both cargos and coat proteins during vesicle trafficking. Arabidopsis AP-1µ/HAPLESS13 (HAP13) is a core component of AP-1 for protein sorting at the trans-Golgi network/early endosomes (TGN/EE). We report here that Arabidopsis HAP13 is critical for pollen sac formation and for sporophytic control of pollen production. Functional loss of HAP13 causes a reduction in pollen sac number. It also results in the dysfunction of tapetum such that secretory function of tapetum at early stages and PCD of tapetum at later stages are both compromised. We further show that the expression of SPL, the polar distribution of auxin maximum, as well as the asymmetric distribution of PIN1 are interfered in hap13 anthers, which in combination may lead to male sterility in hap13.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Adaptor Proteins, Signal Transducing , Apoptosis , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Biological Transport , Cell Communication , Flowers , Gene Expression Regulation, Plant
3.
Front Oncol ; 13: 1219838, 2023.
Article in English | MEDLINE | ID: mdl-37719009

ABSTRACT

Objective: To develop a deep learning (DL) model for predicting axillary lymph node (ALN) metastasis using dynamic ultrasound (US) videos in breast cancer patients. Methods: A total of 271 US videos from 271 early breast cancer patients collected from Xiang'an Hospital of Xiamen University andShantou Central Hospitabetween September 2019 and June 2021 were used as the training, validation, and internal testing set (testing set A). Additionally, an independent dataset of 49 US videos from 49 patients with breast cancer, collected from Shanghai 10th Hospital of Tongji University from July 2021 to May 2022, was used as an external testing set (testing set B). All ALN metastases were confirmed using pathological examination. Three different convolutional neural networks (CNNs) with R2 + 1D, TIN, and ResNet-3D architectures were used to build the models. The performance of the US video DL models was compared with that of US static image DL models and axillary US examination performed by ultra-sonographers. The performances of the DL models and ultra-sonographers were evaluated based on accuracy, sensitivity, specificity, and area under the receiver operating characteristic curve (AUC). Additionally, gradient class activation mapping (Grad-CAM) technology was also used to enhance the interpretability of the models. Results: Among the three US video DL models, TIN showed the best performance, achieving an AUC of 0.914 (95% CI: 0.843-0.985) in predicting ALN metastasis in testing set A. The model achieved an accuracy of 85.25% (52/61), with a sensitivity of 76.19% (16/21) and a specificity of 90.00% (36/40). The AUC of the US video DL model was superior to that of the US static image DL model (0.856, 95% CI: 0.753-0.959, P<0.05). The Grad-CAM technology confirmed the heatmap of the model, which highlighted important subregions of the keyframe for ultra-sonographers' review. Conclusion: A feasible and improved DL model to predict ALN metastasis from breast cancer US video images was developed. The DL model in this study with reliable interpretability would provide an early diagnostic strategy for the appropriate management of axillary in the early breast cancer patients.

4.
Nat Plants ; 8(9): 1094-1107, 2022 09.
Article in English | MEDLINE | ID: mdl-36050463

ABSTRACT

The coordinated metabolism of carbon and nitrogen is essential for optimal plant growth and development. Nitrate is an important molecular signal for plant adaptation to a changing environment, but how nitrate regulates plant growth under carbon deficiency conditions remains unclear. Here we show that the evolutionarily conserved energy sensor SnRK1 negatively regulates the nitrate signalling pathway. Nitrate promoted plant growth and downstream gene expression, but such effects were repressed when plants were grown under carbon deficiency conditions. Mutation of KIN10, the α-catalytic subunit of SnRK1, partially suppressed the inhibitory effects of carbon deficiency on nitrate-mediated plant growth. KIN10 phosphorylated NLP7, the master regulator of the nitrate signalling pathway, to promote its cytoplasmic localization and degradation. Furthermore, nitrate depletion induced KIN10 accumulation, whereas nitrate treatment promoted KIN10 degradation. Such KIN10-mediated NLP7 regulation allows carbon and nitrate availability to control optimal nitrate signalling and ensures the coordination of carbon and nitrogen metabolism in plants.


Subject(s)
Arabidopsis Proteins , Arabidopsis , Arabidopsis/metabolism , Arabidopsis Proteins/genetics , Arabidopsis Proteins/metabolism , Carbon/metabolism , Gene Expression Regulation, Plant , Nitrates/metabolism , Nitrogen/metabolism , Plants/metabolism , Protein Serine-Threonine Kinases/genetics , Transcription Factors/metabolism
5.
Plant Cell ; 33(9): 3004-3021, 2021 09 24.
Article in English | MEDLINE | ID: mdl-34129038

ABSTRACT

Nitrate is both an important nutrient and a critical signaling molecule that regulates plant metabolism, growth, and development. Although several components of the nitrate signaling pathway have been identified, the molecular mechanism of nitrate signaling remains unclear. Here, we showed that the growth-related transcription factors HOMOLOG OF BRASSINOSTEROID ENHANCED EXPRESSION2 INTERACTING WITH IBH1 (HBI1) and its three closest homologs (HBIs) positively regulate nitrate signaling in Arabidopsis thaliana. HBI1 is rapidly induced by nitrate through NLP6 and NLP7, which are master regulators of nitrate signaling. Mutations in HBIs result in the reduced effects of nitrate on plant growth and ∼22% nitrate-responsive genes no longer to be regulated by nitrate. HBIs increase the expression levels of a set of antioxidant genes to reduce the accumulation of reactive oxygen species (ROS) in plants. Nitrate treatment induces the nuclear localization of NLP7, whereas such promoting effects of nitrate are significantly impaired in the hbi-q and cat2 cat3 mutants, which accumulate high levels of H2O2. These results demonstrate that HBI-mediated ROS homeostasis regulates nitrate signal transduction through modulating the nucleocytoplasmic shuttling of NLP7. Overall, our findings reveal that nitrate treatment reduces the accumulation of H2O2, and H2O2 inhibits nitrate signaling, thereby forming a feedback regulatory loop to regulate plant growth and development.


Subject(s)
Arabidopsis Proteins/genetics , Arabidopsis/physiology , Basic Helix-Loop-Helix Transcription Factors/genetics , Homeostasis , Nitrates/metabolism , Reactive Oxygen Species , Signal Transduction , Arabidopsis Proteins/metabolism , Basic Helix-Loop-Helix Transcription Factors/metabolism
6.
J Integr Plant Biol ; 63(5): 902-912, 2021 May.
Article in English | MEDLINE | ID: mdl-33210841

ABSTRACT

Nitrate is the main source of nitrogen for plants but often distributed heterogeneously in soil. Plants have evolved sophisticated strategies to achieve adequate nitrate by modulating the root system architecture. The nitrate acquisition system is triggered by the short mobile peptides C-TERMINALLY ENCODED PEPTIDES (CEPs) that are synthesized on the nitrate-starved roots, but induce the expression of nitrate transporters on the other nitrate-rich roots through an unclear signal transduction pathway. Here, we demonstrate that the transcription factors HBI1 and TCP20 play important roles in plant growth and development in response to fluctuating nitrate supply. HBI1 physically interacts with TCP20, and this interaction was enhanced by the nitrate starvation. HBI1 and TCP20 directly bind to the promoters of CEPs and cooperatively induce their expression. Mutation in HBIs and/or TCP20 resulted in impaired systemic nitrate acquisition response. Our solid genetic and molecular evidence strongly indicate that the HBI1-TCP20 module positively regulates the CEPs-mediated systemic nitrate acquisition.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Nitrates/metabolism , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , Signal Transduction
7.
J Integr Plant Biol ; 62(4): 421-432, 2020 Apr.
Article in English | MEDLINE | ID: mdl-31001922

ABSTRACT

The formation of lateral branches has an important and fundamental contribution to the remarkable developmental plasticity of plants, which allows plants to alter their architecture to adapt to the challenging environment conditions. The Gibberellin (GA) phytohormones have been known to regulate the outgrowth of axillary meristems (AMs), but the specific molecular mechanisms remain unclear. Here we show that DELLA proteins regulate axillary bud formation by interacting and regulating the DNA-binding ability of SQUAMOSA-PROMOTER BINDING PROTEIN LIKE 9 (SPL9), a microRNA156-targeted squamosa promoter binding protein-like transcription factor. SPL9 participates in the initial regulation of axillary buds by repressing the expression of LATERAL SUPPRESSOR (LAS), a key regulator in the initiation of AMs, and LAS contributes to the specific expression pattern of the GA deactivation enzyme GA2ox4, which is specifically expressed in the axils of leaves to form a low-GA cell niche in this anatomical region. Nevertheless, increasing GA levels in leaf axils by ectopically expressing the GA-biosynthesis enzyme GA20ox2 significantly impaired axillary meristem initiation. Our study demonstrates that DELLA-SPL9-LAS-GA2ox4 defines a core feedback regulatory module that spatially pattern GA content in the leaf axil and precisely control the axillary bud formation in different spatial and temporal.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Flowers/growth & development , Gibberellins/metabolism , Trans-Activators/metabolism , Arabidopsis Proteins/genetics , Gene Expression Regulation, Plant , MicroRNAs/genetics , MicroRNAs/metabolism , Models, Biological , Plant Leaves/metabolism , Protein Binding , Transcription, Genetic
8.
Proc Natl Acad Sci U S A ; 114(24): E4877-E4883, 2017 06 13.
Article in English | MEDLINE | ID: mdl-28559348

ABSTRACT

Double fertilization in angiosperms requires the delivery of immotile sperm through pollen tubes, which enter embryo sacs to initiate synergid degeneration and to discharge. This fascinating process, called pollen tube reception, involves extensive communications between pollen tubes and synergids, within which few intracellular regulators involved have been revealed. Here, we report that vacuolar acidification in synergids mediated by AP1G and V-ATPases might be critical for pollen tube reception. Functional loss of AP1G or VHA-A, encoding the γ subunit of adaptor protein 1 or the shared component of two endomembrane V-ATPases, respectively, impaired synergid-controlled pollen tube reception and caused partial female sterility. AP1G works in parallel to the plasma membrane-associated receptor FERONIA in synergids, suggesting that synergid-mediated pollen tube reception requires proper sorting of vacuolar cargos by AP1G. Although AP1G did not mediate the targeting of V-ATPases, AP1G loss of function or the expression of AP1G-RNAi compromised vacuolar acidification mediated by V-ATPases, implying their genetic interaction. We propose that vacuolar acidification might represent a distinct cell-death mechanism specifically adopted by the plant phylum, which is critical for synergid degeneration during pollen tube reception.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Arabidopsis Proteins/metabolism , Pollen Tube/metabolism , Vacuolar Proton-Translocating ATPases/metabolism , Arabidopsis/metabolism , Cell Death/physiology , Cell Membrane/metabolism , Fertilization/physiology , Magnoliopsida/metabolism , Pollination/physiology
9.
Plant Physiol ; 174(3): 1609-1620, 2017 Jul.
Article in English | MEDLINE | ID: mdl-28559361

ABSTRACT

Plant vacuoles are versatile organelles critical for plant growth and responses to environment. Vacuolar proteins are transported from the endoplasmic reticulum via multiple routes in plants. Two classic routes bear great similarity to other phyla with major regulators known, such as COPII and Rab5 GTPases. By contrast, vacuolar trafficking mediated by adaptor protein-3 (AP-3) or that independent of the Golgi has few recognized cargos and none of the regulators. In search of novel regulators for vacuolar trafficking routes and by using a fluorescence-based forward genetic screen, we demonstrated that the multispan transmembrane protein, Arabidopsis (Arabidopsis thaliana) PROTEIN S-ACYL TRANSFERASE10 (PAT10), is an AP-3-mediated vacuolar cargo. We show that the tonoplast targeting of PAT10 is mediated by the AP-3 complex but independent of the Rab5-mediated post-Golgi trafficking route. We also report that AP-3-mediated vacuolar trafficking involves a subpopulation of COPII and requires the vacuolar tethering complex HOPS. In addition, we have identified two novel mutant alleles of AP-3δ, whose point mutations interfered with the formation of the AP-3 complex as well as its membrane targeting. The results presented here shed new light on the vacuolar trafficking route mediated by AP-3 in plant cells.


Subject(s)
Adaptor Protein Complex 3/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , COP-Coated Vesicles/metabolism , Multiprotein Complexes/metabolism , Vacuoles/metabolism , Acylation , Cell Membrane/metabolism , Fluorescence , Genetic Testing , Glutamic Acid/metabolism , Glycine/metabolism , Golgi Apparatus/metabolism , Intracellular Membranes/metabolism , Models, Biological , Protein Transport , Structure-Activity Relationship , Subcellular Fractions/metabolism , rab5 GTP-Binding Proteins/metabolism
10.
J Integr Plant Biol ; 59(9): 594-599, 2017 Sep.
Article in English | MEDLINE | ID: mdl-28544342

ABSTRACT

Pollen development is a pre-requisite for sexual reproduction of angiosperms, during which various cellular activities are involved. Pollen development accompanies dynamic remodeling of vacuoles through fission and fusion, disruption of which often compromises pollen viability. We previously reported that the Y subunit of adaptor protein 1 (AP1G) mediates synergid degeneration during pollen tube reception. Here, we demonstrate that AP1G is essential for pollen development. AP1G loss-of-function resulted in male gametophytic lethality due to defective pollen development. By ultrastructural analysis and fluorescence labeling, we demonstrate that AP1G loss-of-function compromised dynamic vacuolar remodeling during pollen development and impaired vacuolar acidification of pollen. Results presented here support a key role of vacuoles in gametophytic pollen development.


Subject(s)
Adaptor Proteins, Signal Transducing/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Pollen/growth & development , Arabidopsis/metabolism , Arabidopsis/ultrastructure , Pollen/ultrastructure
11.
PLoS Genet ; 12(8): e1006269, 2016 08.
Article in English | MEDLINE | ID: mdl-27541731

ABSTRACT

Planar morphogenesis, a distinct feature of multicellular organisms, is crucial for the development of ovule, progenitor of seeds. Both receptor-like kinases (RLKs) such as STRUBBELIG (SUB) and auxin gradient mediated by PIN-FORMED1 (PIN1) play instructive roles in this process. Fine-tuned intercellular communications between different cell layers during ovule development demands dynamic membrane distribution of these cell-surface proteins, presumably through vesicle-mediated sorting. However, the way it's achieved and the trafficking routes involved are obscure. We report that HAPLESS13 (HAP13)-mediated trafficking of SUB is critical for ovule development. HAP13 encodes the µ subunit of adaptor protein 1 (AP1) that mediates protein sorting at the trans-Golgi network/early endosome (TGN/EE). The HAP13 mutant, hap13-1, is defective in outer integument growth, resulting in exposed nucellus accompanied with impaired pollen tube guidance and reception. SUB is mis-targeted in hap13-1. However, unlike that of PIN2, the distribution of PIN1 is independent of HAP13. Genetic interference of exocytic trafficking at the TGN/EE by specifically downregulating HAP13 phenocopied the defects of hap13-1 in SUB targeting and ovule development, supporting a key role of sporophytically expressed SUB in instructing female gametogenesis.


Subject(s)
Adaptor Protein Complex 1/genetics , Arabidopsis Proteins/genetics , Membrane Transport Proteins/genetics , Ovule/genetics , Receptor Protein-Tyrosine Kinases/genetics , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/biosynthesis , Endosomes/genetics , Gametogenesis, Plant/genetics , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , MADS Domain Proteins/biosynthesis , MADS Domain Proteins/genetics , Membrane Transport Proteins/biosynthesis , Ovule/growth & development , Plant Development/genetics , Protein Transport/genetics , Receptor Protein-Tyrosine Kinases/biosynthesis , Signal Transduction
12.
Sci Rep ; 6: 20309, 2016 Feb 04.
Article in English | MEDLINE | ID: mdl-26842807

ABSTRACT

We report here that Arabidopsis PROTEIN S-ACYL TRANSFERASE14 (PAT14), through its palmitate transferase activity, acts at the vacuolar trafficking route to repress salicylic acid (SA) signaling, thus mediating age-dependent but not carbon starvation-induced leaf senescence. Functional loss of PAT14 resulted in precocious leaf senescence and its transcriptomic analysis revealed that senescence was dependent on salicylic acid. Overexpressing PAT14 suppressed the expression of SA responsive genes. Introducing the SA deficient mutants, npr1-5 and NahG, but not other hormonal mutants, completely suppressed the precocious leaf senescence of PAT14 loss-of-function, further supporting the epistatic relation between PAT14 and the SA pathway. By confocal fluorescence microscopy, we showed that PAT14 is localized at the Golgi, the trans-Golg network/early endosome, and prevacuolar compartments, indicating its roles through vacuolar trafficking. By reporter analysis and real time PCRs, we showed that the expression PAT14, unlike most of the senescence associated genes, is not developmentally regulated, suggesting post-transcriptional regulatory mechanisms on its functionality. We further showed that the maize and wheat homologs of PAT14 fully rescued the precocious leaf senescence of pat14-2, demonstrating that the role of PAT14 in suppressing SA signaling during age-dependent leaf senescence is evolutionarily conserved between dicots and monocots.


Subject(s)
Acyltransferases/metabolism , Arabidopsis Proteins/metabolism , Salicylic Acid/metabolism , Acyltransferases/chemistry , Acyltransferases/genetics , Amino Acid Sequence , Arabidopsis/growth & development , Arabidopsis/metabolism , Arabidopsis Proteins/chemistry , Arabidopsis Proteins/genetics , Carbon/metabolism , Cytokinins/metabolism , DNA, Bacterial/genetics , DNA, Bacterial/metabolism , Down-Regulation , Golgi Apparatus/metabolism , Indoleacetic Acids/metabolism , Mixed Function Oxygenases/metabolism , Molecular Sequence Data , Phenotype , Plant Leaves/growth & development , Plant Leaves/metabolism , Plants, Genetically Modified/metabolism , Sequence Alignment , Signal Transduction , Triticum/enzymology , Up-Regulation , Zea mays/enzymology
13.
Plant Physiol ; 162(4): 1897-910, 2013 Aug.
Article in English | MEDLINE | ID: mdl-23766365

ABSTRACT

In plant cells, secretory and endocytic routes intersect at the trans-Golgi network (TGN)/early endosome (EE), where cargos are further sorted correctly and in a timely manner. Cargo sorting is essential for plant survival and therefore necessitates complex molecular machinery. Adaptor proteins (APs) play key roles in this process by recruiting coat proteins and selecting cargos for different vesicle carriers. The µ1 subunit of AP-1 in Arabidopsis (Arabidopsis thaliana) was recently identified at the TGN/EE and shown to be essential for cytokinesis. However, little was known about other cellular activities affected by mutations in AP-1 or the developmental consequences of such mutations. We report here that HAPLESS13 (HAP13), the Arabidopsis µ1 adaptin, is essential for protein sorting at the TGN/EE. Functional loss of HAP13 displayed pleiotropic developmental defects, some of which were suggestive of disrupted auxin signaling. Consistent with this, the asymmetric localization of PIN-FORMED2 (PIN2), an auxin transporter, was compromised in the mutant. In addition, cell morphogenesis was disrupted. We further demonstrate that HAP13 is critical for brefeldin A-sensitive but wortmannin-insensitive post-Golgi trafficking. Our results show that HAP13 is a key link in the sophisticated trafficking network in plant cells.


Subject(s)
Adaptor Protein Complex 1/metabolism , Arabidopsis Proteins/metabolism , Arabidopsis/metabolism , Endosomes/metabolism , Protein Transport , trans-Golgi Network/metabolism , Adaptor Protein Complex 1/genetics , Arabidopsis/drug effects , Arabidopsis/genetics , Arabidopsis/growth & development , Arabidopsis Proteins/genetics , Brefeldin A/pharmacology , Gene Expression Regulation, Plant , Indoleacetic Acids/metabolism , Mutation , Plants, Genetically Modified , Signal Transduction/genetics
14.
Plant J ; 74(3): 486-97, 2013 May.
Article in English | MEDLINE | ID: mdl-23384085

ABSTRACT

Successful reproduction of flowering plants requires constant communication between female tissues and growing pollen tubes. Female cells secrete molecules and peptides as nutrients or guidance cues for fast and directional tube growth, which is executed by dynamic changes of intracellular activities within pollen tubes. Compared with the extensive interest in female cues and intracellular activities of pollen tubes, how female cues are sensed and interpreted intracellularly in pollen is poorly understood. We show here that COBL10, a glycosylphosphatidylinositol (GPI)-anchored protein, is one component of this pollen tube internal machinery. Mutations in COBL10 caused gametophytic male sterility due to reduced pollen tube growth and compromised directional sensing in the female transmitting tract. Deposition of the apical pectin cap and cellulose microfibrils was disrupted in cobl10 pollen tubes. Pollen tube localization of COBL10 at the apical plasma membrane is critical for its function and relies on proper GPI processing and its C-terminal hydrophobic residues. GPI-anchored proteins are widespread cell sensors in mammals, especially during egg-sperm communication. Our results that COBL10 is critical for directional growth of pollen tubes suggest that they play critical roles in cell-cell communications in plants.


Subject(s)
Arabidopsis Proteins/metabolism , Arabidopsis/growth & development , Glycosylphosphatidylinositols/metabolism , Pollen Tube/growth & development , Alleles , Arabidopsis/anatomy & histology , Arabidopsis/genetics , Arabidopsis Proteins/genetics , Cell Membrane/genetics , Cell Membrane/metabolism , Glycosylphosphatidylinositols/genetics , Homozygote , Hydrophobic and Hydrophilic Interactions , Microscopy, Electron, Transmission , Mutagenesis, Insertional , Mutation , Plant Infertility , Pollen Tube/genetics , Pollen Tube/ultrastructure , Pollination
15.
Zhonghua Liu Xing Bing Xue Za Zhi ; 32(1): 73-6, 2011 Jan.
Article in Chinese | MEDLINE | ID: mdl-21518546

ABSTRACT

To discuss the effects on early warning of measles, using the neural networks. Based on the available data through monthly and weekly reports on measles from January 1986 to August 2006 in Wuhan city. The modal was developed using the neural networks to predict and analyze the prevalence and incidence of measles. When the dynamic time series modal was established with back propagation (BP) networks consisting of two layers, if p was assigned as 9, the convergence speed was acceptable and the correlation coefficient was equal to 0.85. It was more acceptable for monthly forecasting the specific value, but better for weekly forecasting the classification under probabilistic neural networks (PNN). When data was big enough to serve the purpose, it seemed more feasible for early warning using the two-layer BP networks. However, when data was not enough, then PNN could be used for the purpose of prediction. This method seemed feasible to be used in the system for early warning.


Subject(s)
Measles/prevention & control , Neural Networks, Computer , Forecasting , Humans
SELECTION OF CITATIONS
SEARCH DETAIL
...