Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 6 de 6
Filter
Add more filters










Database
Language
Publication year range
1.
iScience ; 25(5): 104188, 2022 May 20.
Article in English | MEDLINE | ID: mdl-35402859

ABSTRACT

Mesenchymal stem cells (MSCs) are being studied for the treatment of COVID-19-associated critical illness, due to their immunomodulatory properties. Here, we hypothesized that viral mimic-priming improves MSCs' abilities to rebalance the dysregulated immune responses in COVID-19. Transcriptome analysis of poly(I:C)-primed MSCs (pIC-MSCs) showed upregulation of pathways in antiviral and immunomodulatory responses. Together with increased expression of antiviral proteins such as MX1, IFITM3, and OAS1, these changes translated to greater effector functions in regulating monocytes and granulocytes while further enhancing MSCs' ability to block SARS-CoV-2 pseudovirus entry into epithelial cells. Most importantly, the addition of pIC-MSCs to COVID-19 patient whole blood significantly reduced inflammatory neutrophils and increased M2 monocytes while enhancing their phagocytic effector function. We reveal for the first time that MSCs can be primed by Toll-like receptor 3 agonist to improve their ability to rebalance the dysregulated immune responses seen in severe SARS-CoV-2 infection.

2.
Stem Cell Res Ther ; 12(1): 184, 2021 03 16.
Article in English | MEDLINE | ID: mdl-33726829

ABSTRACT

BACKGROUND: Acute lung injury (ALI) and in its severe form, acute respiratory distress syndrome (ARDS), results in increased pulmonary vascular inflammation and permeability and is a major cause of mortality in many critically ill patients. Although cell-based therapies have shown promise in experimental ALI, strategies are needed to enhance the potency of mesenchymal stem cells (MSCs) to develop more effective treatments. Genetic modification of MSCs has been demonstrated to significantly improve the therapeutic benefits of these cells; however, the optimal vector for gene transfer is not clear. Given the acute nature of ARDS, transient transfection is desirable to avoid off-target effects of long-term transgene expression, as well as the potential adverse consequences of genomic integration. METHODS: Here, we explored whether a minicircle DNA (MC) vector containing human angiopoietin 1 (MC-ANGPT1) can provide a more effective platform for gene-enhanced MSC therapy of ALI/ARDS. RESULTS: At 24 h after transfection, nuclear-targeted electroporation using an MC-ANGPT1 vector resulted in a 3.7-fold greater increase in human ANGPT1 protein in MSC conditioned media compared to the use of a plasmid ANGPT1 (pANGPT1) vector (2048 ± 567 pg/mL vs. 552.1 ± 33.5 pg/mL). In the lipopolysaccharide (LPS)-induced ALI model, administration of pANGPT1 transfected MSCs significantly reduced bronchoalveolar lavage (BAL) neutrophil counts by 57%, while MC-ANGPT1 transfected MSCs reduced it by 71% (p < 0.001) by Holm-Sidak's multiple comparison test. Moreover, compared to pANGPT1, the MC-ANGPT1 transfected MSCs significantly reduced pulmonary inflammation, as observed in decreased levels of proinflammatory cytokines, such as tumor necrosis factor-alpha (TNF-α), interferon-gamma (IFN-γ), interleukin-6 (IL-6), monocyte chemoattractant protein-1 (MCP-1), and macrophage inflammatory protein-2 (MIP-2). pANGPT1-transfected MSCs significantly reduced BAL albumin levels by 71%, while MC-ANGPT1-transfected MSCs reduced it by 85%. CONCLUSIONS: Overall, using a minicircle vector, we demonstrated an efficient and sustained expression of the ANGPT1 transgene in MSCs and enhanced the therapeutic effect on the ALI model compared to plasmid. These results support the potential benefits of MC-ANGPT1 gene enhancement of MSC therapy to treat ARDS.


Subject(s)
Acute Lung Injury , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells , Acute Lung Injury/genetics , Acute Lung Injury/therapy , Humans , Lipopolysaccharides , Lung , Mice , Transgenes
3.
Sci Rep ; 9(1): 18078, 2019 12 02.
Article in English | MEDLINE | ID: mdl-31792313

ABSTRACT

Mesenchymal stem cells (MSCs) have been shown to exert immunomodulatory effects in both acute and chronic diseases. In acute inflammatory conditions like sepsis, cell therapy must be administered within hours of diagnosis, requiring "off-the-shelf" cryopreserved allogeneic cell products. However, their immunomodulatory potency, particularly in abilities to modulate innate immune cells, has not been well documented. Herein we compared the stabilities and functionalities of cultured versus thawed, donor-matched MSCs in modulating immune responses in vitro and in vivo. Cultured and thawed MSCs exhibited similar surface marker profiles and viabilities at 0 hr; however, thawed MSCs exhibited higher levels of apoptotic cells beyond 4 hrs. In vitro potency assays showed no significant difference between the abilities of both MSCs (donor-matched) to suppress proliferation of activated T cells, enhance phagocytosis of monocytes, and restore endothelial permeability after injury. Most importantly, in animals with polymicrobial sepsis, both MSCs significantly improved the phagocytic ability of peritoneal lavage cells, and reduced plasma levels of lactate and selected inflammatory cytokines without significant difference between groups. These results show comparable in vitro and in vivo immunomodulatory efficacy of thawed and fresh MSC products, providing further evidence for the utility of a cryopreserved MSC product for acute inflammatory diseases.


Subject(s)
Immunomodulation , Mesenchymal Stem Cell Transplantation , Mesenchymal Stem Cells/immunology , Sepsis/therapy , Animals , Apoptosis , Cells, Cultured , Cryopreservation , Female , Humans , Lymphocyte Activation , Mesenchymal Stem Cells/cytology , Mice, Inbred C57BL , Phagocytosis , Sepsis/immunology , T-Lymphocytes/immunology
4.
Crit Care Med ; 47(7): 918-925, 2019 07.
Article in English | MEDLINE | ID: mdl-30720538

ABSTRACT

OBJECTIVES: Cellular Immunotherapy for Septic Shock is the first-in-human clinical trial evaluating allogeneic mesenchymal stem/stromal cells in septic shock patients. Here, we sought to determine whether plasma cytokine profiles may provide further information into the safety and biological effects of mesenchymal stem/stromal cell treatment, as no previous study has conducted a comprehensive analysis of circulating cytokine levels in critically ill patients treated with mesenchymal stem/stromal cells. DESIGN: Phase 1 dose-escalation trial. PATIENTS: The interventional cohort (n = 9) of septic shock patients received a single dose of 0.3, 1.0, or 3.0 million mesenchymal stem/stromal cells/kg body weight (n = 3 per dose). The observational cohort received no mesenchymal stem/stromal cells (n = 21). INTERVENTIONS: Allogeneic bone marrow-derived mesenchymal stem/stromal cells. MEASUREMENTS AND MAIN RESULTS: Serial plasma samples were collected at study baseline prior to mesenchymal stem/stromal cell infusion (0 hr), 1 hour, 4 hours, 12 hours, 24 hours, and 72 hours after mesenchymal stem/stromal cell infusion/trial enrollment. Forty-nine analytes comprised mostly of cytokines along with several biomarkers were measured. We detected no significant elevations in a broad range of pro-inflammatory cytokines and biomarkers between the interventional and observational cohorts. Stratification of the interventional cohort by mesenchymal stem/stromal cell dose further revealed patient-specific and dose-dependent perturbations in cytokines, including an early but transient dampening of pro-inflammatory cytokines (e.g., interleukin-1ß, interleukin-2, interleukin-6, interleukin-8, and monocyte chemoattractant protein 1), suggesting that mesenchymal stem/stromal cell treatment may alter innate immune responses and underlying sepsis biology. CONCLUSIONS: A single infusion of up to 3 million cells/kg of allogeneic mesenchymal stem/stromal cells did not exacerbate elevated cytokine levels in plasma of septic shock patients, consistent with a safe response. These data also offer insight into potential biological mechanisms of mesenchymal stem/stromal cell treatment and support further investigation in larger randomized controlled trials.


Subject(s)
Cytokines/biosynthesis , Mesenchymal Stem Cell Transplantation/methods , Shock, Septic/metabolism , Shock, Septic/therapy , Adult , Biomarkers , Dose-Response Relationship, Drug , Female , Humans , Inflammation Mediators/metabolism , Male , Mesenchymal Stem Cell Transplantation/adverse effects , Middle Aged , Severity of Illness Index
5.
FEBS Lett ; 586(4): 314-8, 2012 Feb 17.
Article in English | MEDLINE | ID: mdl-22265972

ABSTRACT

We present here the crystal structures of human lamin B1 globular tail domain and coiled 2B domain, which adopt similar folds to Ig-like domain and coiled-coil domain of lamin A, respectively. Despite the overall similarity, we found an extra intermolecular disulfide bond in the lamin B1 coil 2B domain, which does not exist in lamin A/C. In addition, the structural analysis indicates that interactions at the lamin B1 homodimer interface are quite different from those of lamin A/C. Thus our research not only reveals the diversely formed homodimers among lamin family members, but also sheds light on understanding the important roles of lamin B1 in forming the nuclear lamina matrix.


Subject(s)
Lamin Type B/chemistry , Amino Acid Sequence , Crystallography, X-Ray , Dimerization , Humans , Lamin Type A/chemistry , Lamin Type A/genetics , Lamin Type B/genetics , Models, Molecular , Molecular Sequence Data , Protein Structure, Quaternary , Protein Structure, Secondary , Protein Structure, Tertiary , Recombinant Proteins/chemistry , Recombinant Proteins/genetics , Sequence Homology, Amino Acid , Structural Homology, Protein
6.
Proc Natl Acad Sci U S A ; 103(11): 4174-9, 2006 Mar 14.
Article in English | MEDLINE | ID: mdl-16537504

ABSTRACT

Genetic tractability and easy manipulation make Caenorhabditis elegans a good model to study host-pathogen interactions. Dozens of different bacterial species can pathogenically infect C. elegans under laboratory conditions, and all of these microbes are extracellular pathogens to nematodes. Viruses, on the other hand, are obligate intracellular parasites, and yet no viral infections have been reported for C. elegans. We established a procedure allowing vaccinia virus to enter and subsequently replicate in C. elegans. Virus replication was significantly enhanced in ced-3, ced-4, ced-9(gf), and egl-1(lf) mutants, demonstrating that the core programmed cell death (PCD) genes ced-3, ced-4, ced-9, and egl-1 control vaccinia virus replication in C. elegans. The ability of ced-3 and ced-4 alleles to restrict virus replication is correlated with their cell-killing activities. Moreover, the increase in vaccinia virus replication levels in the PCD-defective mutants was not likely to be caused by the extra live cells, as neither the inhibition of PCD by icd-1 overexpression nor the presence of extra cells after extra cell divisions in cul-1 or lin-23 mutants had any significant effect on vaccinia virus replication. Therefore, the core PCD genes possess a unique function in controlling vaccinia virus replication in C. elegans.


Subject(s)
Caenorhabditis elegans Proteins/physiology , Caenorhabditis elegans/genetics , Caenorhabditis elegans/virology , Calcium-Binding Proteins/physiology , Caspases/physiology , Vaccinia virus/physiology , Animals , Apoptosis/genetics , Apoptosis Regulatory Proteins/genetics , Apoptosis Regulatory Proteins/physiology , Caenorhabditis elegans/cytology , Caenorhabditis elegans Proteins/genetics , Calcium-Binding Proteins/genetics , Caspases/genetics , Genes, Helminth , Mutation , Proto-Oncogene Proteins/genetics , Proto-Oncogene Proteins/physiology , Proto-Oncogene Proteins c-bcl-2 , Repressor Proteins/genetics , Repressor Proteins/physiology , Virus Replication/genetics , Virus Replication/physiology
SELECTION OF CITATIONS
SEARCH DETAIL
...