Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 16 de 16
Filter
Add more filters










Publication year range
1.
Mol Immunol ; 171: 22-35, 2024 Jul.
Article in English | MEDLINE | ID: mdl-38749236

ABSTRACT

OBJECTIVES: Systemic lupus erythematosus (SLE) is a multi-organ autoimmune disease, of which the pathogens is remains obscure. Viral infection, particularly Epstein Barr viru (EBV) infection, has been considered a common pathogenic factor. This study suggests that c-Maf may be an important target in T cell differentiation during SLE progression, providing a potentially new perspective on the role of viral infection in the pathogenesis of autoimmune diseases. METHODS: Cytokines of EBV-infected SLE patients were measured by ELISA and assessed in conjunction with their clinical data. IFN-α, c-Maf, and the differentiation of Th17/Treg cells in SLE patients and MRL/LPR mice were analyzed using FCM, WB, RT-PCR, etc. Following the infection of cells and mice with EBV or viral mimic poly (dA:dT), the changes of the aforementioned indicators were investigated. The relationship among IFN-α, STAT3, c-Maf and Th17 cells was determined by si-RNA technique. RESULTS: Many SLE patients are found to be complicated by viral infections; Further, studies have demonstrated that viral infection, especially EBV, is involved in SLE development. This study showed that viral infections might promote IFN-α secretion, inhibit c-Maf expression by activating STAT3, increase Th17 cell differentiation, and lead to the immune imbalance of Th17/Treg cells, thus playing a role in the onset and progression of SLE. CONCLUSION: This study demonstrates that EBV infections may contribute to SLE development by activating STAT3 through IFN-α, inhibiting c-Maf, and causing Th17/Treg immune imbalance. Our work provided a new insight into the pathogenesis and treatment of SLE.


Subject(s)
Epstein-Barr Virus Infections , Herpesvirus 4, Human , Interferon-alpha , Lupus Erythematosus, Systemic , Mice, Inbred MRL lpr , Proto-Oncogene Proteins c-maf , T-Lymphocytes, Regulatory , Th17 Cells , Lupus Erythematosus, Systemic/immunology , Lupus Erythematosus, Systemic/virology , Th17 Cells/immunology , Humans , Animals , Epstein-Barr Virus Infections/immunology , Epstein-Barr Virus Infections/virology , Epstein-Barr Virus Infections/complications , T-Lymphocytes, Regulatory/immunology , Mice , Interferon-alpha/immunology , Interferon-alpha/metabolism , Female , Adult , Herpesvirus 4, Human/immunology , Proto-Oncogene Proteins c-maf/immunology , Proto-Oncogene Proteins c-maf/genetics , Male , Cell Differentiation/immunology , Disease Progression , Middle Aged , STAT3 Transcription Factor/metabolism , STAT3 Transcription Factor/immunology , Young Adult
2.
Inflammation ; 2024 Apr 17.
Article in English | MEDLINE | ID: mdl-38630167

ABSTRACT

Innate immune response is the first line of defense for the host against virus invasion. One important response is the synthesis and secretion of type I interferon (IFN-I) in the virus-infected host cells. Here, we found that respiratory syncytial virus (RSV) infection induced high expression of TRIM25, which belongs to the tripartite motif-containing (TRIM) family of proteins. TRIM25 bound and activated retinoic acid-inducible gene I (RIG-I) by K63-linked ubiquitination. Accordingly, RIG-I mediated the production of IFN-I mainly through the nuclear factor kappa-B (NF-κB) pathway in respiratory epithelial cells. Interestingly, IFN-I, in turn, promoted a high expression of TRIM38 which downregulated the expression of IFN-I by reducing the protein level of RIG-I by K48-linked ubiquitination. More importantly, the binding site of TRIM25 to RIG-I was found in the narrow 25th-43rd amino acid (aa) region of RIG-I N-terminus. In contrast, the binding sites of TRIM38 to RIG-I were found in a much wider amino acid region, which included the binding site of TRIM25 on RIG-I. As a result, TRIM38 inhibits the production of IFN-I by competing with TRIM25 for RIG-I binding. Thus, TRIM38 negatively regulates RIG-I activation to, in turn, downregulate IFN-I expression, thus interfering with host immune response. A negative feedback loop effectively "puts the brakes" on the reaction once host immune response is overactivated and homeostasis is unbalanced. We also discovered that TRIM25 bound RIG-I by a new K63-linked ubiquitination located at K-45 of the first caspase recruitment domain (CARD). Collectively, these results confirm an antagonism between TRIM38 and TRIM25 in regulating IFN-I production by affecting RIG-I activity following RNA virus infection.

3.
mBio ; : e0148023, 2023 Nov 01.
Article in English | MEDLINE | ID: mdl-37909764

ABSTRACT

Mitochondria are good targets for viruses to manipulate their hosts. However, it remains obscure whether respiratory syncytial virus (RSV) target mitochondria to suppress the type I interferon (IFN) responses. Here, we show that nonstructural protein 1 (NS1) protein of RSV interacts with Tu translation elongation factor mitochondrial (TUFM), which can lead to its localization in mitochondria and finally induce TUFM-dependent mitophagy and inhibition of IFNß. Mechanically, NS1-mediated TUFM-dependent mitophagy does not depend on the PINK1-PARKIN pathway and classic mitophagy receptors. Importantly, NS1 may act as a new receptor protein to bridge mitochondria and autophagosomes by interacting with TUFM and LC3B. The LIR motif of NS1 protein is essential for its interaction with LC3B and is of great importance for its mitophagy induction and IFNß suppression. Finally, NS1-induced TUFM-dependent mitophagy was essential for its attenuated IFNß response using autophagy-deficient cells and mice. Our study provides a novel mitophagy receptor molecular and a new antiviral option by suppressing antiviral innate immune via targeting TUFM-dependent mitophagy. IMPORTANCE It is a worthy concern for us to understand virus-host interactions which affect progression and prognosis of disease. We demonstrated that the non-structural protein 1 of respiratory syncytial virus (RSV NS1) may act as a novel mitophagy receptor to induce mitophagy by binding LC3B and mitochondrial protein TUFM, and finally dampen interferon (IFN) responses induced by RIG1 and RSV infection. TUFM is beneficial for RSV replication in vivo and vitro. It is new and interesting that RSV NS1 may function as a mitophagy receptor to interact with LC3B. The LIR motif of NS1 protein is essential for its interaction with LC3B. We further confirm that RSV NS1 inhibited IFNß response and promoted RSV replication in autophagy-dependent mechanisms in vivo and vitro. Our study contributes to understanding virus-host interaction, enriching our insights into RSV pathogenic mechanism and exploiting new antiviral treatments targeting TUFM.

4.
Vaccines (Basel) ; 11(9)2023 Sep 21.
Article in English | MEDLINE | ID: mdl-37766186

ABSTRACT

Streptococcus pyogenes (group A Streptococcus; GAS), a Gram-positive coccal bacterium, poses a significant global disease burden, especially in low- and middle-income countries. Its manifestations can range from pharyngitis and skin infection to severe and aggressive diseases, such as necrotizing fasciitis and streptococcal toxic shock syndrome. At present, although GAS is still sensitive to penicillin, there are cases of treatment failure for GAS pharyngitis, and antibiotic therapy does not universally prevent subsequent disease. In addition to strengthening global molecular epidemiological surveillance and monitoring of antibiotic resistance, developing a safe and effective licensed vaccine against GAS would be the most effective way to broadly address GAS-related diseases. Over the past decades, the development of GAS vaccines has been stalled, mainly because of the wide genetic heterogeneity of GAS and the diverse autoimmune responses to GAS. With outbreaks of scarlet fever in various countries in recent years, accelerating the development of a safe and effective vaccine remains a high priority. When developing a GAS vaccine, many factors need to be considered, including the selection of antigen epitopes, avoidance of self-response, and vaccine coverage. Given the challenges in GAS vaccine development, this review describes the important virulence factors that induce disease by GAS infection and how this has influenced the progression of vaccine development efforts, focusing on several candidate vaccines that are further along in development.

5.
Adv Sci (Weinh) ; 10(17): e2206385, 2023 06.
Article in English | MEDLINE | ID: mdl-37078799

ABSTRACT

Nanoscale air channel transistors (NACTs) have received significant attention due to their remarkable high-frequency performance and high switching speed, which is enabled by the ballistic transport of electrons in sub-100 nm air channels. Despite these advantages, NACTs are still limited by low currents and instability compared to solid-state devices. GaN, with its low electron affinity, strong thermal and chemical stability, and high breakdown electric field, presents an appealing candidate as a field emission material. Here, a vertical GaN nanoscale air channel diode (NACD) with a 50 nm air channel is reported, fabricated by low-cost IC-compatible manufacturing technologies on a 2-inch sapphire wafer. The device boasts a record field emission current of 11 mA at 10 V in the air and exhibits outstanding stability during cyclic, long-term, and pulsed voltage testing. Additionally, it displays fast switching characteristics and good repeatability with a response time of fewer than 10 ns. Moreover, the temperature-dependent performance of the device can guide the design of GaN NACTs for applications in extreme conditions. The research holds great promise for large current NACTs and will speed up their practical implementation.

6.
Ann Hepatol ; 28(3): 101082, 2023.
Article in English | MEDLINE | ID: mdl-36893888

ABSTRACT

INTRODUCTION AND OBJECTIVES: As a fatal clinical syndrome, acute liver failure (ALF) is characterized by overwhelming liver inflammation and hepatic cell death. Finding new therapeutic methods has been a challenge in ALF research. VX-765 is a known pyroptosis inhibitor and has been reported to prevent damage in a variety of diseases by reducing inflammation. However, the role of VX-765 in ALF is still unclear. MATERIALS AND METHODS: ALF model mice were treated with D-galactosamine (D-GalN) and lipopolysaccharide (LPS). LO2 cells were stimulated with LPS. Thirty subjects were enrolled in clinical experiments. The levels of inflammatory cytokines, pyroptosis-associated proteins and peroxisome proliferator-activated receptor α (PPARα) were detected using quantitative reverse transcription-polymerase chain reaction (qRT‒PCR), western blotting and immunohistochemistry. An automatic biochemical analyzer was used to determine the serum aminotransferase enzyme levels. Hematoxylin and eosin (HE) staining was used to observe the pathological features of the liver. RESULTS: With the progression of ALF, the expression levels of interleukin (IL) -1ß, IL-18, caspase-1, and serum alanine aminotransferase (ALT) and aspartate aminotransferase (AST) were increased. VX-765 could reduce the mortality rate of ALF mice, relieve liver pathological damage, and reduce inflammatory responses to protect against ALF. Further experiments showed that VX-765 could protect against ALF through PPARα, and this protective effect against ALF was reduced in the context of PPARα inhibition. CONCLUSIONS: As ALF progresses, inflammatory responses and pyroptosis deteriorate gradually. VX-765 can inhibit pyroptosis and reduce inflammatory responses to protect against ALF by upregulating PPARα expression, thus providing a possible therapeutic strategy for ALF.


Subject(s)
Liver Failure, Acute , PPAR alpha , Mice , Animals , PPAR alpha/genetics , PPAR alpha/metabolism , Pyroptosis , Lipopolysaccharides/metabolism , Lipopolysaccharides/pharmacology , Liver Failure, Acute/chemically induced , Liver Failure, Acute/prevention & control , Liver/pathology , Inflammation/prevention & control , Inflammation/metabolism , Tumor Necrosis Factor-alpha/metabolism , Mice, Inbred C57BL
7.
Front Cell Infect Microbiol ; 13: 1324727, 2023.
Article in English | MEDLINE | ID: mdl-38264727

ABSTRACT

Background: We previously found that the respiratory epithelial cells could eliminate the invaded group A streptococcus (GAS) through autophagy induced by binding a fibronectin (Fn) binding protein (FnBp) expressed on the surface of GAS to plasma protein Fn and its receptor integrin α5ß1 of epithelial cells. Is autophagy initiated by FnBp+ bacteria via FnBp-Fn-Integrin α5ß1 axis a common event in respiratory epithelial cells? Methods: We chose Staphylococcus aureus (S. aureus/S. a) and Listeria monocytogenes (L. monocytogenes/L. m) as representatives of extracellular and intracellular FnBp+ bacteria, respectively. The FnBp of them was purified and the protein function was confirmed by western blot, viable bacteria count, confocal and pull-down. The key molecule downstream of the action axis was detected by IP, mass spectrometry and bio-informatics analysis. Results: We found that different FnBp from both S. aureus and L. monocytogenes could initiate autophagy through FnBp-Fn-integrin α5ß1 axis and this could be considered a universal event, by which host tries to remove invading bacteria from epithelial cells. Importantly, we firstly reported that S100A8, as a key molecule downstream of integrin ß1 chain, is highly expressed upon activation of integrin α5ß1, which in turn up-regulates autophagy. Conclusions: Various FnBp from FnBp+ bacteria have the ability to initiate autophagy via FnBp-Fn-Integrin α5ß1 axis to promote the removal of invading bacteria from epithelial cells in the presence of fewer invaders. S100A8 is a key molecule downstream of Integrin α5ß1 in this autophagy pathway.


Subject(s)
Fibronectins , Listeria monocytogenes , Integrin alpha5beta1 , Staphylococcus aureus , Tryptophan Oxygenase , Autophagy , Epithelial Cells
8.
J Virol ; 96(22): e0130922, 2022 11 23.
Article in English | MEDLINE | ID: mdl-36317881

ABSTRACT

Respiratory syncytial virus (RSV) is a major pathogen that can cause acute respiratory infectious diseases of the upper and lower respiratory tract, especially in children, elderly individuals, and immunocompromised people. Generally, following viral infection, respiratory epithelial cells secrete cytokines and chemokines to recruit immune cells and initiate innate and/or adaptive immune responses. However, whether chemokines affect viral replication in nonimmune cells is rarely clear. In this study, we detected that chemokine CCL5 was highly expressed, while expression of its receptor, CCR1, was downregulated in respiratory epithelial cells after RSV infection. When we overexpressed CCR1 on respiratory epithelial cells in vivo or in vitro, viral load was significantly suppressed, which can be restored by the neutralizing antibody for CCR1. Interestingly, the antiviral effect of CCR1 was not related to type I interferon (IFN-I), apoptosis induction, or viral adhesion or entry inhibition. In contrast, it was related to the preferential recruitment and activation of the adaptor Gαi, which promoted inositol 1,4,5-triphosphate receptor type 3 (ITPR3) expression, leading to inhibited STAT3 phosphorylation; explicitly, phosphorylated STAT3 (p-STAT3) was verified to be among the important factors regulating the activity of HSP90, which has been previously reported to be a chaperone of RSV RNA polymerase. In summary, we are the first to reveal that CCR1 on the surface of nonimmune cells regulates RSV replication through a previously unknown mechanism that does not involve IFN-I induction. IMPORTANCE Our results revealed a novel mechanism by which RSV escapes innate immunity. That is, although it induces high CCL5 expression, RSV might attenuate the binding of CCL5 by downregulating the expression of CCR1 in respiratory epithelial cells to weaken the inhibitory effect of CCR1 on HSP90 activity and thereby facilitate RSV replication in nonimmune cells. This study provides a new target for the development of co-antiviral inhibitors against other components of the host and co-molecular chaperone/HSP90 and provides a scientific basis for the search for effective broad-spectrum antiviral drugs.


Subject(s)
Receptors, CCR1 , Respiratory Syncytial Virus Infections , Respiratory Syncytial Virus, Human , Virus Replication , Humans , Chemokines , Receptors, CCR1/genetics , Receptors, CCR1/metabolism , Respiratory Syncytial Virus, Human/physiology , GTP-Binding Protein alpha Subunits/genetics , GTP-Binding Protein alpha Subunits/metabolism
9.
Article in English | MEDLINE | ID: mdl-35747381

ABSTRACT

The present study was to isolate and purify Bombyx batryticatus cocoonase inhibitor (BBCI) and to evaluate its inhibitory effect on the proliferation of SMCC-7721 cells. BBCI was purified from the crude proteins of Bombyx batryticatus using affinity chromatography with cocoonase as the ligand, its N-terminal amino acid sequence was determined using the Edman degradation method, and its inhibiting activity on SMCC-7721 cell proliferation was detected in vitro using the MTT method and in vivo in tumor-bearing nude mice. The purified BBCI presented as a single band in SDS-PAGE, the molecular weight determined by time-of-flight mass spectrometry was 13,973.63 Da, and its N-terminal amino acid sequence was VRNKRQSNDD. BBCI was a noncompetitive cocoonase inhibitor with an average Michaelis constant of 76.50, and it inhibited cocoonase activity with an inhibition ratio of 1 : 1 (molar). BBCI could inhibit the proliferation of SMCC-7721 cells in vitro with the IC50 being about 260.52 µg/ml within 36 h of treatment and inhibit the SMCC-7721 tumor growth in nude mice by subcutaneous injection of BBCI around the tumor, where the tumor inhibitory effect was dose dependent. BBCI did not significantly influence the spleen coefficient of the mice. In conclusion, to the best of our knowledge, the present study is the first to report that BBCI, which was purified from Bombyx batryticatus, was a serine proteinase inhibitor with antitumor activity.

10.
Ecotoxicol Environ Saf ; 226: 112854, 2021 Dec 15.
Article in English | MEDLINE | ID: mdl-34619474

ABSTRACT

Glyphosate (GLY) is the most widely used broad-spectrum, non-selective herbicide in the world, whose main degradation product is aminomethyl phosphonic acid (AMPA). Because of long-term and large-scale use, residual GLY and AMPA in the environment pose great environmental and human health threats. The purpose of this study is to evaluate the effects and mechanism of residual low-concentrations of GLY and AMPA in the environment on the development of zebrafish embryos. Zebrafish embryos were exposed to 0, 1, 10, 100, and 700 ng·mL-1 GLY and AMPA for 72 h (from 2 to 74 h post-fertilization). With increasing exposure dose, heart rates of both embryos and larvae showed a rising trend and obvious arrhythmia appeared. Defects in cardiac development and function of zebrafish juveniles may be related to altered transcription levels of cardiac development genes (TBX5, NKX2.5, BMP4) and apoptosis genes (Bcl-2, Bax). In addition, pericardial edema and bone deformation of zebrafish embryos may be caused by inhibition of Na+/K+-ATPase and Ca2+-ATPase after exposure to GLY and AMPA. The present results demonstrated that at typical environmental residual concentrations of GLY and AMPA had similar developmental toxicity in zebrafish embryos.


Subject(s)
Embryo, Nonmammalian , Zebrafish , Animals , Embryonic Development , Glycine/analogs & derivatives , Humans , Phosphorous Acids , Glyphosate
11.
Front Mol Biosci ; 8: 663987, 2021.
Article in English | MEDLINE | ID: mdl-33981724

ABSTRACT

Chronic obstructive pulmonary disease (COPD) is a chronic respiratory disease with high morbidity and mortality worldwide. So far, smoking is still its leading cause. The characteristics of COPD are emphysema and airway remodeling, as well as chronic inflammation, which were predominated by macrophages. Some studies have reported that macrophages were involved in emphysema and chronic inflammation, but whether there is a link between airway remodeling and macrophages remains unclear. In this study, we found that both acute and chronic cigarette smoke exposure led to an increase of macrophages in the lung and a decrease of ciliated cells in the airway epithelium of a mouse model. The results of in vitro experiments showed that the ciliary protein (ß-tubulin-IV) levels of BEAS-2B cells could be inhibited when co-cultured with human macrophage line THP-1, and the inhibitory effect was augmented with the stimulation of cigarette smoke extract (CSE). Based on the results of transcriptome sequencing, we focused on the protein, bone morphogenetic protein-2 (BMP-2), secreted by the macrophage, which might mediate this inhibitory effect. Further studies confirmed that BMP-2 protein inhibited ß-tubulin-IV protein levels of BEAS-2B cells under the stimulation of CSE. Coincidentally, this inhibitory effect could be nearly blocked by the BMP receptor inhibitor, LDN, or could be interfered with BMP-2 siRNA. This study suggests that activation and infiltration of macrophages in the lung induced by smoke exposure lead to a high expression of BMP-2, which in turn inhibits the ciliary protein levels of the bronchial epithelial cells, contributing to the remodeling of airway epithelium, and aggravates the development of COPD.

13.
mBio ; 11(3)2020 06 09.
Article in English | MEDLINE | ID: mdl-32518187

ABSTRACT

Group A Streptococcus (GAS), one of the most common extracellular pathogens, has been reported to invade epithelial and endothelial cells. Our results reveal that M1 GAS strain SF370 can be effectively eliminated by respiratory epithelial cells. Emerging evidence indicates that autophagy is an important strategy for nonphagocytes to eliminate intracellular bacteria. Upon pathogen recognition, cell surface receptors can directly trigger autophagy, which is a critical step in controlling infection. However, the mechanisms of how cells sense invading bacteria and use this information specifically to trigger autophagy remain unclear. In this study, we stimulated cells and infected mice with M and FbaA mutants of M1 GAS strain SF370 or with purified M and FbaA proteins (two critical surface structural proteins of GAS), and found that only FbaA protein was involved in autophagy induction. Furthermore, the FbaA protein induced autophagy independent of common pattern recognition receptors (such as Toll-like receptors); rather, it relies on binding to integrin α5ß1 expressed on the cell surface, which is mediated by extracellular matrix protein fibronectin (Fn). The FbaA-Fn-integrin α5ß1 complex activates Beclin-1 through the mTOR-ULK1-Beclin-1 pathway, which enables the Beclin-1/Vps34 complex to recruit Rab7 and, ultimately, to promote the formation of autophagosomes. By knocking down integrin α5ß1, Fn, Atg5, Beclin-1, and ULK1 in Hep2 cells and deleting Atg5 or integrin α5ß1 in mice, we reveal a novel role for integrin α5ß1 in inducing autophagy. Our study demonstrates that integrin α5ß1, through interacting with pathogen components, initiates effective host innate immunity against invading intracellular pathogens.IMPORTANCE Autophagy is generally considered a strategy used by the innate immune system to eliminate invasive pathogens through capturing and transferring them to lysosomes. Currently, researchers pay more attention to how virulence factors secreted by GAS regulate the autophagic process. Here, we provide the first evidence that the structural protein FbaA of M1 GAS strain SF370 is a potent inducer of autophagy in epithelial cells. Furthermore, we demonstrate that integrin α5ß1 in epithelial cells in vitro and in vivo acts as a receptor to initiate the signaling for inducing autophagy by binding to FbaA of M1 GAS strain SF370 via Fn. Our study reveals the underlying mechanisms by which pathogens induce Fn-integrin α5ß1 to trigger autophagy in a conserved pattern in epithelial cells.


Subject(s)
Autophagy , Bacterial Proteins/metabolism , Epithelial Cells/microbiology , Fibronectins/metabolism , Integrin alpha5beta1/metabolism , Streptococcus pyogenes/metabolism , Animals , Cell Line , Female , Fibronectins/genetics , Glycoproteins/metabolism , Host Microbial Interactions , Humans , Immunity, Innate , Intracellular Space/microbiology , Lung/microbiology , Mice , Mice, Inbred BALB C , Streptococcal Infections/microbiology , Streptococcal Infections/physiopathology , Streptococcus pyogenes/genetics
14.
Microbes Infect ; 22(6-7): 245-253, 2020.
Article in English | MEDLINE | ID: mdl-32437926

ABSTRACT

The global pandemic of COVID-19 caused by SARS-CoV-2 (also known as 2019-nCoV and HCoV-19) has posed serious threats to public health and economic stability worldwide, thus calling for development of vaccines against SARS-CoV-2 and other emerging and reemerging coronaviruses. Since SARS-CoV-2 and SARS-CoV have high similarity of their genomic sequences and share the same cellular receptor (ACE2), it is essential to learn the lessons and experiences from the development of SARS-CoV vaccines for the development of SARS-CoV-2 vaccines. In this review, we summarized the current knowledge on the advantages and disadvantages of the SARS-CoV vaccine candidates and prospected the strategies for the development of safe, effective and broad-spectrum coronavirus vaccines for prevention of infection by currently circulating SARS-CoV-2 and other emerging and reemerging coronaviruses that may cause future epidemics or pandemics.


Subject(s)
Coronavirus Infections/prevention & control , Pandemics/prevention & control , Pneumonia, Viral/prevention & control , Severe Acute Respiratory Syndrome/prevention & control , Viral Vaccines/immunology , Animals , Betacoronavirus/genetics , COVID-19 , COVID-19 Vaccines , Coronavirus Infections/classification , Coronavirus Infections/immunology , Cross Protection , Humans , Pneumonia, Viral/immunology , SARS-CoV-2 , Severe Acute Respiratory Syndrome/immunology , Vaccines, Inactivated/immunology , Viral Vaccines/classification
15.
Behav Brain Res ; 372: 112037, 2019 10 17.
Article in English | MEDLINE | ID: mdl-31202862

ABSTRACT

Our internal models of the world help us to process information rapidly: in general model-based learning is more rapid than model-free learning. However, the cognitive flexibility required to overcome cognitive predispositions can let us down: it is not fully developed until adulthood; predispositions can be unconscious biases; and cognitive flexibility is impaired in many psychiatric and neurological conditions. To understand these limits to flexibility, we need to know how the brain generates predispositions and deploys flexibility. We performed a detailed analysis of the exploratory behavior of rats in the pre-solution period of a two-alternative forced choice discrimination learning task. Rats readily learn in which of two bowls, filled with differentially scented and textured digging materials, there is hidden bait. In a single session, they are presented with a series of discrimination learning and reversal stages. We performed a simple Bayesian analysis on the data from 68 rats, 33 of which had lesions of the medial prefrontal cortex, to examine patterns of responding in the pre-solution period. Control rats rapidly focussed on the relevant stimulus attributes and showed flexibility when required to learn about a different stimulus attribute. Rats with prefrontal cortex damage had reduced sensitivity to negative feedback. They were able to overcome this deficit and solve the credit assignment problem when there were limited alternatives or when attention was appropriately focused and predispositions matched the required response. However, the learning impairment presents as a problem with shifting attention due to the additional difficulty of solving the credit assignment problem when the attentional set is inconsistent with the required response.


Subject(s)
Choice Behavior/physiology , Discrimination Learning/physiology , Exploratory Behavior/physiology , Animals , Attention/physiology , Bayes Theorem , Behavior, Animal/physiology , Cognition , Male , Prefrontal Cortex/physiology , Rats , Rats, Inbred Strains , Reversal Learning/physiology , Reward
16.
Article in English | MEDLINE | ID: mdl-29868491

ABSTRACT

Group A streptococcus (GAS), a common pathogen, is able to escape host immune attack and thus survive for longer periods of time. One of the mechanisms used by GAS is the upregulated expression of immunosuppressive molecules, which leads to a reduction in the production of inflammatory cytokines in immune cells. In the present study, we found that macrophages produced lower levels of proinflammatory cytokines (IL-1ß, TNF-α, IL-6) when challenged with GAS than they did when challenged with Escherichia coli (E. coli). Simultaneously, in a mouse model of lung infection, GAS appeared to induce a weaker inflammatory response compared to E. coli. Our data also indicated that the expression of the A20 transcriptional regulator was higher in GAS-infected macrophages than that in macrophages infected with E. coli, and that high expression of A20 correlated with a reduction in the production of TRAF6. SiRNA targeting of A20 led to the increased production of TRAF6, IL-1ß, TNF-α, and IL-6, suggesting that A20 inhibits synthesis of these key proinflammatory cytokines. We also investigated the pathway underlying A20 production and found that the synthesis of A20 depends on My88, and to a lower extent on TNFR1. Finally, we showed a significant reduction in the expression of A20 in macrophages stimulated by M protein-mutant GAS, however, a speB-GAS mutant, which is unable to degrade M protein, induced a greater level of A20 production than wild type GAS. Collectively, our data suggested that M protein of GAS was responsible for inducing A20 expression in macrophages, which in turn down-regulates the inflammatory cytokine response in order to facilitate GAS in evading immune surveillance and thus prolong survival in the host.


Subject(s)
Antigens, Bacterial/metabolism , Bacterial Outer Membrane Proteins/metabolism , Carrier Proteins/metabolism , Lung/immunology , Macrophages/immunology , Pneumonia, Pneumococcal/metabolism , Streptococcus pyogenes/immunology , Tumor Necrosis Factor alpha-Induced Protein 3/metabolism , Animals , Antigens, Bacterial/genetics , Bacterial Outer Membrane Proteins/genetics , Carrier Proteins/genetics , Disease Models, Animal , Escherichia coli/genetics , Escherichia coli/immunology , Female , Humans , Interleukin-1beta/genetics , Interleukin-1beta/metabolism , Interleukin-6/genetics , Interleukin-6/metabolism , Lung/microbiology , Lung/pathology , Macrophages/microbiology , Mice , Mice, Inbred C57BL , Pneumonia, Pneumococcal/microbiology , RAW 264.7 Cells , Streptococcus pyogenes/genetics , Tumor Necrosis Factor alpha-Induced Protein 3/genetics , Tumor Necrosis Factor-alpha/genetics , Tumor Necrosis Factor-alpha/metabolism
SELECTION OF CITATIONS
SEARCH DETAIL
...