Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Language
Publication year range
1.
Adv Sci (Weinh) ; 10(23): e2302444, 2023 Aug.
Article in English | MEDLINE | ID: mdl-37279377

ABSTRACT

The layered crystal structure of Cr2 Ge2 Te6 shows ferromagnetic ordering at the two-dimensional limit, which holds promise for spintronic applications. However, external voltage pulses can trigger amorphization of the material in nanoscale electronic devices, and it is unclear whether the loss of structural ordering leads to a change in magnetic properties. Here, it is demonstrated that Cr2 Ge2 Te6 preserves the spin-polarized nature in the amorphous phase, but undergoes a magnetic transition to a spin glass state below 20 K. Quantum-mechanical computations reveal the microscopic origin of this transition in spin configuration: it is due to strong distortions of the CrTeCr bonds, connecting chromium-centered octahedra, and to the overall increase in disorder upon amorphization. The tunable magnetic properties of Cr2 Ge2 Te6 can be exploited for multifunctional, magnetic phase-change devices that switch between crystalline and amorphous states.

2.
Adv Sci (Weinh) ; 10(15): e2300901, 2023 May.
Article in English | MEDLINE | ID: mdl-36995041

ABSTRACT

Metavalent bonding (MVB) is characterized by the competition between electron delocalization as in metallic bonding and electron localization as in covalent or ionic bonding, serving as an essential ingredient in phase-change materials for advanced memory applications. The crystalline phase-change materials exhibits MVB, which stems from the highly aligned p orbitals and results in large dielectric constants. Breaking the alignment of these chemical bonds leads to a drastic reduction in dielectric constants. In this work, it is clarified how MVB develops across the so-called van der Waals-like gaps in layered Sb2 Te3 and Ge-Sb-Te alloys, where coupling of p orbitals is significantly reduced. A type of extended defect involving such gaps in thin films of trigonal Sb2 Te3 is identified by atomic imaging experiments and ab initio simulations. It is shown that this defect has an impact on the structural and optical properties, which is consistent with the presence of non-negligible electron sharing in the gaps. Furthermore, the degree of MVB across the gaps is tailored by applying uniaxial strain, which results in a large variation of dielectric function and reflectivity in the trigonal phase. At last, design strategies are provided for applications utilizing the trigonal phase.

3.
Adv Sci (Weinh) ; 9(30): e2203776, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35981888

ABSTRACT

While metals can be readily processed and reshaped by cold rolling, most bulk inorganic semiconductors are brittle materials that tend to fracture when plastically deformed. Manufacturing thin sheets and foils of inorganic semiconductors is therefore a bottleneck problem, severely restricting their use in flexible electronic applications. It is recently reported that a few single-crystalline 2D van der Waals (vdW) semiconductors, such as InSe, are deformable under compressive stress. Here it is demonstrated that intralayer fracture toughness can be tailored via compositional design to make inorganic semiconductors processable by cold rolling. Systematic ab initio calculations covering a range of van der Waals semiconductors homologous to InSe are reported, leading to material-property maps that forecast trends in both the susceptibility to interlayer slip and the intralayer fracture toughness against cracking. GaSe is predicted, and experimentally confirmed, to be practically amenable to being rolled to large (three quarters) thickness reduction and length extension by a factor of three. The fracture toughness and cleavage energy are predicted to be 0.25 MPa m0.5 and 15 meV Å-2 , respectively. The findings open a new realm of possibility for alloy selection and design toward processing-friendly group-III chalcogenides for practical applications.

4.
Adv Sci (Weinh) ; 9(8): e2103478, 2022 Mar.
Article in English | MEDLINE | ID: mdl-35032111

ABSTRACT

Phase-change material (PCM) devices are one of the most mature nonvolatile memories. However, their high power consumption remains a bottleneck problem limiting the data storage density. One may drastically reduce the programming power by patterning the PCM volume down to nanometer scale, but that route incurs a stiff penalty from the tremendous cost associated with the complex nanofabrication protocols required. Instead, here a materials solution to resolve this dilemma is offered. The authors work with memory cells of conventional dimensions, but design/exploit a PCM alloy that decomposes into a heterogeneous network of nanoscale crystalline domains intermixed with amorphous ones. The idea is to confine the subsequent phase-change switching in the interface region of the crystalline nanodomain with its amorphous surrounding, forming/breaking "nano-bridges" that link up the crystalline domains into a conductive path. This conductive-bridge switching mechanism thus only involves nanometer-scale volume in programming, despite of the large areas in contact with the electrodes. The pore-like devices based on spontaneously phase-separated Ge13 Sb71 O16 alloy enable a record-low programming energy, down to a few tens of femtojoule. The new PCM/fabrication is fully compatible with the current 3D integration technology, adding no expenses or difficulty in processing.

5.
Nat Mater ; 21(3): 290-296, 2022 03.
Article in English | MEDLINE | ID: mdl-34824395

ABSTRACT

Two-phase titanium-based alloys are widely used in aerospace and biomedical applications, and they are obtained through phase transformations between a low-temperature hexagonal closed-packed α-phase and a high-temperature body-centred cubic ß-phase. Understanding how a new phase evolves from its parent phase is critical to controlling the transforming microstructures and thus material properties. Here, we report time-resolved experimental evidence, at sub-ångström resolution, of a non-classically nucleated metastable phase that bridges the α-phase and the ß-phase, in a technologically important titanium-molybdenum alloy. We observed a nanosized and chemically ordered superstructure in the α-phase matrix; its composition, chemical order and crystal structure are all found to be different from both the parent and the product phases, but instigating a vanishingly low energy barrier for the transformation into the ß-phase. This latter phase transition can proceed instantly via vibrational switching when the molybdenum concentration in the superstructure exceeds a critical value. We expect that such a non-classical phase evolution mechanism is much more common than previously believed for solid-state transformations.


Subject(s)
Alloys , Titanium , Alloys/chemistry , Hot Temperature , Molybdenum/chemistry , Phase Transition , Titanium/chemistry
6.
Adv Mater ; 33(9): e2006221, 2021 Mar.
Article in English | MEDLINE | ID: mdl-33491816

ABSTRACT

Tailoring the degree of disorder in chalcogenide phase-change materials (PCMs) plays an essential role in nonvolatile memory devices and neuro-inspired computing. Upon rapid crystallization from the amorphous phase, the flagship Ge-Sb-Te PCMs form metastable rocksalt-like structures with an unconventionally high concentration of vacancies, which results in disordered crystals exhibiting Anderson-insulating transport behavior. Here, ab initio simulations and transport experiments are combined to extend these concepts to the parent compound of Ge-Sb-Te alloys, viz., binary Sb2 Te3 , in the metastable rocksalt-type modification. Then a systematic computational screening over a wide range of homologous, binary and ternary chalcogenides, elucidating the critical factors that affect the stability of the rocksalt structure is carried out. The findings vastly expand the family of disorder-controlled main-group chalcogenides toward many more compositions with a tunable bandgap size for demanding phase-change applications, as well as a varying strength of spin-orbit interaction for the exploration of potential topological Anderson insulators.

7.
ACS Nano ; 14(4): 4456-4462, 2020 Apr 28.
Article in English | MEDLINE | ID: mdl-32275386

ABSTRACT

Materials with layered crystal structures and high in-plane anisotropy, such as black phosphorus, present unique properties and thus promise for applications in electronic and photonic devices. Recently, the layered structures of GeS2 and GeSe2 were utilized for high-performance polarization-sensitive photodetection in the short wavelength region due to their high in-plane optical anisotropy and wide band gap. The highly complex, low-symmetric (monoclinic) crystal structures are at the origin of the high in-plane optical anisotropy, but the structural nature of the corresponding nanostructures remains to be fully understood. Here, we present an atomic-scale characterization of monoclinic GeS2 nanostructures and quantify the in-plane structural anisotropy at the sub-angstrom level in real space by Cs-corrected scanning transmission electron microscopy. We elucidate the origin of this high in-plane anisotropy in terms of ordered and disordered arrangement of [GeS4] tetrahedra in GeS2 monolayers, through density functional theory (DFT) calculations and orbital-based bonding analyses. We also demonstrate high in-plane mechanical, electronic, and optical anisotropies in monolayer GeS2 and envision phase transitions under uniaxial strain that could potentially be exploited for nonvolatile memory applications.

8.
Exp Ther Med ; 15(5): 4503-4507, 2018 May.
Article in English | MEDLINE | ID: mdl-29725385

ABSTRACT

Synovial chondromatosis, also known as synovial osteochondromatosis, is a rare, benign condition characterized by the formation of multiple cartilaginous nodules in the synovium of facet spaces. Synovial chondromatosis affects many joints, the knee being the most common. The present report examined a 47-year-old male with symptoms of swelling and pain in the right knee, who was admitted to hospital in September 2015. Following admittance, arthroscopic explorations were conducted. Viscous fluid and multiple cartilage-like clumps were identified in the patient's joints during surgery. There was evidence of synovial hyperemia and edema in the inner and outer lateral recesses of the patellar bursa, accompanied by villous projections. Synovium debridement and removal of cartilage-like free masses were performed. Following 6-month follow-up, the motion of the right knee ranged from 0-150° and no further swelling or pain was experienced by the patient. Following arthroscopy, the international knee documentation committee function score improved from 70.6 to 89.4 points. The results of the present report indicate that arthroscopic exploration is an effective treatment for patients with synovial chondromatosis.

9.
Materials (Basel) ; 10(8)2017 Jul 27.
Article in English | MEDLINE | ID: mdl-28773222

ABSTRACT

Metal-insulator transition (MIT) is one of the most essential topics in condensed matter physics and materials science. The accompanied drastic change in electrical resistance can be exploited in electronic devices, such as data storage and memory technology. It is generally accepted that the underlying mechanism of most MITs is an interplay of electron correlation effects (Mott type) and disorder effects (Anderson type), and to disentangle the two effects is difficult. Recent progress on the crystalline Ge1Sb2Te4 (GST) compound provides compelling evidence for a disorder-driven MIT. In this work, we discuss the presence of strong disorder in GST, and elucidate its effects on electron localization and transport properties. We also show how the degree of disorder in GST can be reduced via thermal annealing, triggering a disorder-driven metal-insulator transition. The resistance switching by disorder tuning in crystalline GST may enable novel multilevel data storage devices.

SELECTION OF CITATIONS
SEARCH DETAIL
...