Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 10 de 10
Filter
1.
Article in English | MEDLINE | ID: mdl-38775854

ABSTRACT

To confirm the protective mechanism of genistein on osteoarthritis (OA). Firstly, we constructed an anterior cruciate ligament transection (ACLT) rat model and administered two doses of genistein via gavage. The effects of the drug on cartilage damage repair and synovitis in OA rats were evaluated through pain-related behavioral assessments, pathological staining, detection of inflammatory factors, and western blot analysis. Secondly, we constructed IL-1-induced chondrocytes and synovial fibroblast models, co-incubated them with genistein, and evaluated the protective effects of genistein on both types of cells through cell apoptosis and cytoskeleton staining. To verify the role of this pathway, we applied the GSK3ß inhibitor TWS119 and the Wnt/ß-catenin inhibitor XAV939 to ACLT rats and two types of cells to analyze the potential mechanism of genistein's action on OA. Our results confirmed the protective effect of genistein on joint cartilage injury in ACLT rats and its alleviating effect on synovitis. The results of cell experiments showed that genistein can protect IL-1ß-induced chondrocytes and synovial fibroblasts, inhibit IL-1ß-induced cell apoptosis, increase the fluorescence intensity of F-actin, and inhibit inflammatory response. The results of in vivo and in vitro mechanism studies indicated that TWS119 and XAV939 can attenuate the protective effects of genistein on OA rats and IL-1-induced cell damage. Our research confirmed that genistein may be an effective drug for treating osteoarthritis. Furthermore, we discussed and confirmed that the GSK3ß/Wnt/ß-catenin axis serves as a downstream signaling pathway of genistein, providing theoretical support for its application.

2.
Front Aging Neurosci ; 16: 1364808, 2024.
Article in English | MEDLINE | ID: mdl-38646447

ABSTRACT

Background: Vascular cognitive impairment (VCI) is a major cause of cognitive impairment in the elderly and a co-factor in the development and progression of most neurodegenerative diseases. With the continuing development of neuroimaging, multiple markers can be combined to provide richer biological information, but little is known about their diagnostic value in VCI. Methods: A total of 83 subjects participated in our study, including 32 patients with vascular cognitive impairment with no dementia (VCIND), 21 patients with vascular dementia (VD), and 30 normal controls (NC). We utilized resting-state quantitative electroencephalography (qEEG) power spectra, structural magnetic resonance imaging (sMRI) for feature screening, and combined them with support vector machines to predict VCI patients at different disease stages. Results: The classification performance of sMRI outperformed qEEG when distinguishing VD from NC (AUC of 0.90 vs. 0,82), and sMRI also outperformed qEEG when distinguishing VD from VCIND (AUC of 0.8 vs. 0,0.64), but both underperformed when distinguishing VCIND from NC (AUC of 0.58 vs. 0.56). In contrast, the joint model based on qEEG and sMRI features showed relatively good classification accuracy (AUC of 0.72) to discriminate VCIND from NC, higher than that of either qEEG or sMRI alone. Conclusion: Patients at varying stages of VCI exhibit diverse levels of brain structure and neurophysiological abnormalities. EEG serves as an affordable and convenient diagnostic means to differentiate between different VCI stages. A machine learning model that utilizes EEG and sMRI as composite markers is highly valuable in distinguishing diverse VCI stages and in individually tailoring the diagnosis.

3.
bioRxiv ; 2023 Jul 06.
Article in English | MEDLINE | ID: mdl-37786707

ABSTRACT

Structured illumination microscopy (SIM) is a versatile super-resolution technique known for its compatibility with a wide range of probes and fast implementation. While 3D SIM is capable of achieving a spatial resolution of ∼120 nm laterally and ∼300 nm axially, attempting to further enhance the resolution through methods such as nonlinear SIM or 4-beam SIM introduces complexities in optical configurations, increased phototoxicity, and reduced temporal resolution. Here, we have developed a novel method that combines SIM with augmented super-resolution radial fluctuations (aSRRF) utilizing a single image through image augmentation. By applying aSRRF reconstruction to SIM images, we can enhance the SIM resolution to ∼50 nm isotopically, without requiring any modifications to the optical system or sample acquisition process. Additionaly, we have incorporated the aSRRF approach into an ImageJ plugin and demonstrated its versatility across various fluorescence microscopy images, showcasing a remarkable two-fold resolution increase.

4.
J Bioenerg Biomembr ; 55(5): 365-380, 2023 Oct.
Article in English | MEDLINE | ID: mdl-37725203

ABSTRACT

Knee osteoarthritis (KOA) is defined as a joint disease that occurs mostly among elderly people. Fibroblast-like synoviocytes-derived extracellular vesicles (FLS-EVs) have impacts on the treatment of OA. This study elucidated the mechanism of miR-25-3p in pyroptosis of chondrocytes in KOA. FLSs and EVs were extracted from neonatal mice; destabilization of the medial meniscus (DMM) was used to simulate KOA in mice, followed by the evaluation of cartilage damage and the contents of MMP-3 and MMP-13 in KOA mice. Lipopolysaccharide (LPS) was used to induce inflammation damage in mouse chondrocytes ATDC5, and the cell viability and the expressions of NLRP3, Cleaved-Caspase-1, GSDMD-N, IL-18, and IL-1ß were examined. We found that FLS-EV treatment mitigated the knee-joint damage and symptoms of KOA mice, decreased MMP-3 and MMP-13, and inhibited pyroptosis of chondrocytes in DMM mice and LPS-induced ATD5 cells. Then, Cy3-labeled miR-25-3p in mice chondrocytes was observed and the expressions and the binding relation of miR-25-3p and cytoplasmic polyadenylation element-binding protein 1 (CPEB1) were verified. It showed that FLS-EVs carried miR-25-3p into chondrocytes, and upregulated miR-25-3p expression while inhibited CPEB1 transcription, resulting in mitigation of pyroptosis of chondrocytes, and CPEB1 overexpression reversed the inhibition of FLS-EVs on pyroptosis of chondrocytes in KOA.

5.
Front Aging Neurosci ; 15: 1051177, 2023.
Article in English | MEDLINE | ID: mdl-36815175

ABSTRACT

Objective: This study explored the structural imaging changes in patients with subcortical ischemic vascular disease (SIVD)-vascular cognitive impairment no dementia (VCIND) and the correlation between the changes in gray matter volume and the field of cognitive impairment to provide new targets for early diagnosis and treatment. Methods: Our study included 15 patients with SIVD-normal cognitive impairment (SIVD-NCI), 63 with SIVD-VCIND, 26 with SIVD-vascular dementia (SIVD-VD), and 14 normal controls (NC). T1-weighted images of all participants were collected, and DPABI and SPM12 software were used to process the gray matter of the four groups based on voxels. Fisher's exact test, one-way ANOVA and Kruskal-Wallis H test were used to evaluate all clinical and demographic data and compare the characteristics of diencephalic gray matter atrophy in each group. Finally, the region of interest (ROI) of the SIVD-VCIND was extracted, and Pearson correlation analysis was performed between the ROI and the results of the neuropsychological scale. Results: Compared to the NC, changes in gray matter atrophy were observed in the bilateral orbitofrontal gyrus, right middle temporal gyrus, superior temporal gyrus, and precuneus in the SIVD-VCIND. Gray matter atrophy was observed in the left cerebellar region 6, cerebellar crural region 1, bilateral thalamus, right precuneus, and calcarine in the SIVD-VD. Compared with the SIVD-VCIND, gray matter atrophy changes were observed in the bilateral thalamus in the SIVD-VD (p < 0.05, family-wise error corrected). In the SIVD-VCIND, the total gray matter volume, bilateral medial orbital superior frontal gyrus, right superior temporal gyrus, middle temporal gyrus, and precuneus were positively correlated with Boston Naming Test score, whereas the total gray matter volume, right superior temporal gyrus, and middle temporal gyrus were positively correlated with overall cognition. Conclusion: Structural magnetic resonance imaging can detect extensive and subtle structural changes in the gray matter of patients with SIVD-VCIND and SIVD-VD, providing valuable evidences to explain the pathogenesis of subcortical vascular cognitive impairment and contributing to the early diagnosis of SIVD-VCIND and early warning of SIVD-VD.

6.
Adv Sci (Weinh) ; 9(18): e2200622, 2022 Jun.
Article in English | MEDLINE | ID: mdl-35478438

ABSTRACT

Ni-rich cathodes with high energy densities are considered as promising candidates for advanced lithium-ion batteries, whereas their commercial application is in dilemma due to dramatic capacity decay and poor structure stability stemmed from interfacial instability, structural degradation, and stress-strain accumulation, as well as intergranular cracks. Herein, a piezoelectric LiTaO3 (LTO) layer is facilely deposited onto Li[Nix Coy Mn1- x - y ]O2 (x = 0.6, 0.8) cathodes to induce surface polarized electric fields via the intrinsic stress-strain of Ni-rich active materials, thus modulating interfacial Li+ kinetics upon cycling. Various characterizations indicate that the electrochemical performances of LTO-modified cathodes are obviously enhanced even under large current density and elevated temperature. Intensive explorations from in situ X-ray diffraction technique, finite element analysis, and first-principle calculation manifest that the improvement mechanism of LTO decoration can be attributed to the enhanced structural stability of bulk material, suppressed stress accumulation, and regulated ion transportation. These findings provide deep insight into surface coupling strategy between mechanical and electric fields to regulate the interfacial Li+ kinetics behavior and enhance structure stability for Ni-rich cathodes, which will also arouse great interest from scientists and engineers in multifunctional surface engineering for electrochemical systems.

7.
Opt Express ; 29(18): 28503-28520, 2021 Aug 30.
Article in English | MEDLINE | ID: mdl-34614979

ABSTRACT

The correction of uneven illumination in microscopic image is a basic task in medical imaging. Most of the existing methods are designed for monochrome images. An effective fully convolutional network (FCN) is proposed to directly process color microscopic image in this paper. The proposed method estimates the distribution of illumination information in input image, and then carry out the correction of the corresponding uneven illumination through a feature encoder module, a feature decoder module, and a detail supplement module. In this process, overlapping residual blocks are designed to better transfer the illumination information, and in particular a well-designed weighted loss function ensures that the network can not only correct the illumination but also preserve image details. The proposed method is compared with some related methods on real pathological cell images qualitatively and quantitatively. Experimental results show that our method achieves the excellent performance. The proposed method is also applied to the preprocessing of whole slide imaging (WSI) tiles, which greatly improves the effect of image mosaicking.

8.
Arch Med Sci ; 13(1): 163-173, 2017 Feb 01.
Article in English | MEDLINE | ID: mdl-28144268

ABSTRACT

INTRODUCTION: Using network meta-analysis, we evaluated the adverse effects of the seven most common treatment methods, i.e., bridging external fixation, non-bridging external fixation, K-wire fixation, plaster fixation, dorsal plating, volar plating, and dorsal and volar plating, by their associated risk of developing complex regional pain syndrome (CRPS) in distal radius fracture (DRF) patients. MATERIAL AND METHODS: Following an exhaustive search of scientific literature databases for high quality studies, randomized controlled trials (RCTs) related to our study topic were screened and selected based on stringent predefined inclusion and exclusion criteria. Data extracted from the selected studies were used for statistical analyses using Stata 12.0 software. RESULTS: A total of 17 RCTs, including 1658 DRF patients, were enrolled in this network meta-analysis. Among the 1658 DRF patients, 452 received bridging external fixation, 525 received non-bridging external fixation, 154 received K-wire fixation, 84 received plaster fixation, 132 received dorsal plating, 123 received volar plating, and 188 received dorsal and volar plating. When compared to bridging external fixation patients, there was no marked difference in the CRPS risk in DRF patients receiving different treatments (all p > 0.05). However, the surface under the cumulative ranking curves (SUCRA) for plaster fixation (77.0%) and non-bridging external fixation (71.3%) were significantly higher compared with the other five methods. CONCLUSIONS: Our findings suggest that compared with bridging external fixation, K-wire fixation, dorsal plating, volar plating, dorsal and volar plating, plaster fixation and non-bridging external fixation might be the better treatment methods to reduce the risk of CRPS in DRF patients.

9.
Medicine (Baltimore) ; 95(24): e3767, 2016 Jun.
Article in English | MEDLINE | ID: mdl-27310953

ABSTRACT

Recently, an inverse role for Wnt signaling in the development of osteoclasts in the bone was demonstrated. In the present study, we examined whether there is a commonality in the mechanism of bone resorption and lysis that occur in a diverse set of bone metastatic lesions, as well as in primary bone lesions. Compared with control bone tissue and bone biopsies from patients with nonmetastatic primary tumors (i.e., breast carcinoma, lung adenocarcinoma, and prostate carcinoma), patients with bone metastatic lesions from the three aforementioned primary tumors, as well as osteolytic lesions obtained from the bone biopsies of patients with multiple myeloma, demonstrated an upregulated expression of the glycoprotein Dickkopf-1 at both the mRNA and protein levels. Additionally, by coimmunoprecipitation, Dickkopf-1 pulled-down low-density lipoprotein receptor-related protein 6 (Lrp6), which is a key downstream effector of the Wnt signaling pathway. The expression of Lrp6 was unaltered in the osteometastatic lesions. This negative regulation was associated with a lowered expression of osteoprotegerin in the osteometastatic lesions, an observation that was previously reported to promote osteoclastogenesis. These findings provide a common mechanism for the inverse relationship between the Wnt signaling pathway and the development of primary or metastatic bone lesions. Pharmacological modulation of the Wnt signaling pathway might benefit the clinical management of primary and metastatic bone lesions.


Subject(s)
Bone Neoplasms/genetics , Gene Expression Regulation, Neoplastic , Intercellular Signaling Peptides and Proteins/genetics , Osteogenesis/genetics , Osteoprotegerin/genetics , RNA, Neoplasm/genetics , Aged , Biopsy , Blotting, Western , Bone Neoplasms/metabolism , Bone Neoplasms/secondary , Bone and Bones/metabolism , Bone and Bones/pathology , Cell Differentiation , Female , Humans , Male , Middle Aged , Osteoprotegerin/biosynthesis , Real-Time Polymerase Chain Reaction , Wnt Signaling Pathway
10.
Int Immunopharmacol ; 22(1): 200-3, 2014 Sep.
Article in English | MEDLINE | ID: mdl-24975835

ABSTRACT

Previous studies suggest that the osteoprotegerin gene (OPG) plays an important role in the development of osteoporosis. This study aims to investigate the potential association between OPG genetic polymorphisms and bone mineral density (BMD) and osteoporosis in postmenopausal women. 938 Chinese postmenopausal women were enrolled. The lumbar spine (L(2-4)) BMD, neck BMD, and total hip BMD were measured by dual energy X-ray absorptiometry (DEXA). The genotypes of OPG genetic polymorphisms were evaluated by the created restriction site-polymerase chain reaction (CRS-PCR), PCR-restriction fragment length polymorphism (PCR-RFLP), and DNA sequencing methods. Our data indicated that subjects with genotype TT of the g.26395T>C genetic polymorphism showed a significantly higher adjusted value of BMD when compared with those of genotypes TC and CC. Subjects with genotype AA of the g.27649A>G genetic polymorphism showed a significantly higher adjusted value of BMD than those of genotypes AG and GG. These findings suggest that the OPG genetic polymorphisms may affect BMD and osteoporosis in Chinese postmenopausal women.


Subject(s)
Hip/pathology , Lumbar Vertebrae/pathology , Neck/pathology , Osteoporosis, Postmenopausal/genetics , Osteoprotegerin/genetics , Aged , Bone Density/genetics , China , DNA Mutational Analysis , Female , Genetic Predisposition to Disease , Genotype , Hip/diagnostic imaging , Humans , Lumbar Vertebrae/diagnostic imaging , Middle Aged , Neck/diagnostic imaging , Polymorphism, Genetic , Radiography
SELECTION OF CITATIONS
SEARCH DETAIL
...