Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 771
Filter
1.
Environ Pollut ; 353: 124150, 2024 May 10.
Article in English | MEDLINE | ID: mdl-38735466

ABSTRACT

In the environment, soil colloids are widespread and possess a significant adsorption capacity. This makes them capable of transporting different pollutants, presenting a potential risk to human and ecological well-being. This study aimed to examine the adsorption and co-migration characteristics of benzo(a)pyrene (BaP) and soil colloids in areas contaminated with organic substances, utilizing both static and dynamic batch experiments. In the static adsorption experiments, it was observed that the adsorption of BaP onto soil colloids followed the pseudo-second-order kinetic model (R2 = 0.966), and the adsorption isotherm conformed to the Langmuir model (R2 = 0.995). The BaP and soil colloids primarily formed bonds through π-π interactions and hydrogen bonds. The dynamic experimental outcomes revealed that elevating colloids concentration contributed to increased BaP mobility. Specifically, when the concentration of soil colloids in influent was 500 mg L-1, the mobility of BaP was 23.2 % compared to that without colloids of 13.4 %. Meanwhile, the lowering influent pH value contributed to increased BaP mobility. Specifically, when the influent pH value was 4.0, the mobility of BaP was 30.1 %. The BaP's mobility gradually declined as the initial concentration of BaP in polluted soil increased. Specifically, when the initial concentration of BaP in polluted soil was 5.27 mg kg-1, the mobility of BaP was 39.1 %. This study provides a support for controlling BaP pollution in soil and groundwater.

2.
Environ Pollut ; : 124198, 2024 May 21.
Article in English | MEDLINE | ID: mdl-38782161

ABSTRACT

Electro-Fenton (EF) can in-situ produce H2O2 and effectively activate H2O2 to generate powerful reactive species for the destruction of contaminants under acidic conditions, however, the production of iron-containing sludge and requirement of low working pH significantly hinder its practical application. Herein, a novel Cu, N co-doped carbon (Cu-N@C) with metal organic framework (MOF) as a precursor was constructed and adopted for the elimination of pefloxacin (PEF) in the heterogeneous electro-Fenton (HEF) process. PEF could be almost completely removed within 1 h and total organic carbon (TOC) removal efficiency was 48.57% within 6 h. Meanwhile, Cu-N@C had good repeatability and environmental adaptability, it can still maintain excellent catalytic performance after 10 cycles, and it exhibited satisfactory remediation performance in simulated water matrix. In addition, the HEF process catalyzed by Cu-N@C also showed satisfactory degradation effect on other organic pollutants including atrazine, methylene blue, and chlorotetracycline. Under the action of impressed current, the HEF system could generate H2O2 in-situ, and the active species could be generated in the redox cycle of Cu0/Cu1+/Cu2+. Electron paramagnetic resonance and quenching experiments confirmed that •OH was the dominant active species in the degradation of organic compounds. The degradation process of PEF was studied by mass spectrometry analysis of intermediate products. This study provided a simple method to prepare MOF-based electrocatalyst, which exhibits promising application potential for treatment wastewater.

3.
Environ Sci Technol ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38808456

ABSTRACT

Further reducing total nitrogen (TN) and total phosphorus (TP) in the secondary effluent needs to be realized effectively and in an eco-friendly manner. Herein, four pyrite/sawdust composite-based biofilters were established to treat simulated secondary effluent for 304 days. The results demonstrated that effluent TN and TP concentrations from biofilters under the optimal hydraulic retention time (HRT) of 3.5 h were stable at <2.0 and 0.1 mg/L, respectively, and no significant differences were observed between inoculated sludge sources. The pyrite/sawdust composite-based biofilters had low N2O, CH4, and CO2 emissions, and the effluent's DOM was mainly composed of five fluorescence components. Moreover, mixotrophic denitrifiers (Thiothrix) and sulfate-reducing bacteria (Desulfosporosinus) contributing to microbial nitrogen and sulfur cycles were enriched in the biofilm. Co-occurrence network analysis deciphered that Chlorobaculum and Desulfobacterales were key genera, which formed an obvious sulfur cycle process that strengthened the denitrification capacity. The higher abundances of genes encoding extracellular electron transport (EET) chains/mediators revealed that pyrite not only functioned as an electron conduit to stimulate direct interspecies electron transfer by flagella but also facilitated EET-associated enzymes for denitrification. This study comprehensively evaluates the water-gas-biofilm phases of pyrite/sawdust composite-based biofilters during a long-term study, providing an in-depth understanding of boosted electron transfer in pyrite-based mixotrophic denitrification systems.

4.
Redox Biol ; 73: 103217, 2024 May 28.
Article in English | MEDLINE | ID: mdl-38820984

ABSTRACT

Wound infection of hyperglycemic patient often has extended healing period and increased probability due to the high glucose level. However, achieving precise and safe therapy of the hyperglycemic wound with specific wound microenvironment (WME) remains a major challenge. Herein, a WME-activated smart L-Arg/GOx@TA-Fe (LGTF) nanozymatic system composed of generally recognized as safe (GRAS) compound is engineered. The nanozymatic system combining metal-polyphenol nanozyme (tannic acid-Fe3+, TA-Fe) and natural enzyme (glucose oxidase, GOx) can consume the high-concentration glucose, generating reactive oxygen species (ROS) and nitric oxide (NO) in situ to synergistically disinfect hyperglycemia wound. In addition, glucose consumption and gluconic acid generation can lower glucose level to promote wound healing and reduce the pH of WME to enhance the catalytic activities of the LGTF nanozymatic system. Thereby, low-dose LGTF can perform remarkable synergistic disinfection and healing effect towards hyperglycemic wound. The superior biosafety, high catalytic antibacterial and beneficial WME regulating capacity demonstrate this benign GRAS nanozymatic system is a promising therapeutic agent for hyperglycemic wound.

5.
Sci Total Environ ; 933: 173211, 2024 Jul 10.
Article in English | MEDLINE | ID: mdl-38754511

ABSTRACT

In this study, ionizing radiation was used to induce the in-situ formation of highly dispersed nanosized cobalt oxide on the surface of graphene oxide (R-Co-GO), which was highly effective for activating PMS to degrade sulfamethoxazole (SMX). R-Co-GO had the highest catalytic activity when 150 µL cobalt chloride hexahydrate solution was used in the precursor, and the pseudo first-order kinetic constant of SMX degradation was 0.07 min-1 with high mineralization efficiency (63.1 %) and high PMS utilization efficiency. The sulfate radicals and high-valent cobalt oxo were mainly responsible for SMX degradation. Mechanism analysis showed that cobalt active site dominated in PMS activation, which was responsible for the formation of sulfate radicals and high-valent cobalt oxo; while the carbon framework contributed to the formation of singlet oxygen. The R-Co-GO-150 had good catalytic activity and stability in five cycling experiments, in which SMX was completely degraded and the concentration of dissolved Co was below 0.1 mg/L. In addition, the R-Co-GO-150/PMS system could also degrade phenol, bisphenol A, atrazine and nitrobenzene effectively, confirming its wide applicability. This study provided a facile method to uniformly disperse the metal oxides on the surface of carbon materials, and an effective system for the removal of emerging organic pollutants from the actual wastewater.

6.
J Agric Food Chem ; 2024 Apr 10.
Article in English | MEDLINE | ID: mdl-38600745

ABSTRACT

With aggravated abiotic and biotic stresses from increasing climate change, metal-organic frameworks (MOFs) have emerged as versatile toolboxes for developing environmentally friendly agrotechnologies aligned with agricultural practices and safety. Herein, we have explored MOF-based agrotechnologies, focusing on their intrinsic properties, such as structural and catalytic characteristics. Briefly, MOFs possess a sponge-like porous structure that can be easily stimulated by the external environment, facilitating the controlled release of agrochemicals, thus enabling precise delivery of agrochemicals. Additionally, MOFs offer the ability to remove or degrade certain pollutants by capturing them within their pores, facilitating the development of MOF-based remediation technologies for agricultural environments. Furthermore, the metal-organic hybrid nature of MOFs grants them abundant catalytic activities, encompassing photocatalysis, enzyme-mimicking catalysis, and electrocatalysis, allowing for the integration of MOFs into degradation and sensing agrotechnologies. Finally, the future challenges that MOFs face in agrotechnologies were proposed to promote the development of sustainable agriculture practices.

7.
Biosens Bioelectron ; 255: 116235, 2024 Jul 01.
Article in English | MEDLINE | ID: mdl-38579623

ABSTRACT

Multiplexed immunodetection, which achieves qualitative and quantitative outcomes for multiple targets in a single-run process, provides more sufficient results to guarantee food safety. Especially, lateral flow immunoassay (LFIA), with the ability to offer multiple test lines for analytes and one control line for verification, is a forceful candidate in multiplexed immunodetection. Nevertheless, given that single-signal mode is incredibly vulnerable to interference, further efforts should be engrossed on the combination of multiplexed immunodetection and multiple signals. Photothermal signal has sparked significant excitement in designing immunosensors. In this work, by optimizing and comparing the amount of gold, CuS@Au heterojunctions (CuS@Au HJ) were synthesized. The dual-plasmonic metal-semiconductor hybrid heterojunction exhibits a synergistic photothermal performance by increasing light absorption and encouraging interfacial electron transfer. Meanwhile, the colorimetric property is synergistic enhanced, which is conducive to reduce the consumption of antibodies and then improve assay sensitivity. Therefore, CuS@Au HJ are suitable to be constructed in a dual signal and multiplexed LFIA (DSM-LFIA). T-2 toxin and deoxynivalenol (DON) were used as model targets for the simulated multiplex immunoassay. In contrast to colloidal gold-based immunoassay, the built-in sensor has increased sensitivity by ≈ 4.42 times (colorimetric mode) and ≈17.79 times (photothermal mode) for DON detection and by ≈ 1.75 times (colorimetric mode) and ≈13.09 times (photothermal mode) for T-2 detection. As a proof-of-concept application, this work provides a reference to the design of DSM-LFIA for food safety detection.


Subject(s)
Biosensing Techniques , Metal Nanoparticles , Colorimetry , Immunoassay , Metals
8.
J Agric Food Chem ; 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38624165

ABSTRACT

Immunochromatography (ICA) remains untapped toward enhanced sensitivity and applicability for fulfilling the nuts and bolts of on-site food safety surveillance. Herein, we report a fortified dual-spectral overlap with enhanced colorimetric/fluorescence dual-response ICA for on-site bimodal-type gentamicin (Gen) monitoring by employing polydopamine (PDA)-coated AuNPs (APDA) simultaneously serving as a colorimetric reporter and a fluorescence quencher. Availing of the enhanced colorimetric response that originated from the PDA layer, the resultant APDA exhibits less required antibody and immunoprobes in a single immunoassay, which facilitates improved antibody utilization efficiency and immuno-recognition in APDA-ICA. Further integrated with the advantageous features of fortified excitation and emission dual-spectral overlap for the Arg/ATT-AuNCs, this APDA-ICA with a "turn on/off" pattern achieves the visual limits of detection of 1.0 and 0.5 ng mL-1 for colorimetric and fluorescence patterns (25- and 50-fold lower than standard AuNPs-ICA). Moreover, the excellent self-calibration and satisfactory recovery of 79.03-118.04% were shown in the on-site visual colorimetric-fluorescence analysis for Gen in real environmental media (including real river water, an urban aquaculture water body, an aquatic product, and an animal byproduct). This work provides the feasibility of exploiting fortified dual-spectral overlap with an enhanced colorimetric/fluorescence dual response for safeguarding food safety and public health.

9.
J Phys Chem Lett ; 15(15): 4024-4030, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38577878

ABSTRACT

The nonaqueous electrolyte based on lithium hexafluorophosphate (LiPF6) is the dominant liquid electrolyte in lithium-ion batteries (LIBs). However, trace protic impurities, including H3O+, alcohols, and hydrofluoric acid (HF), can trigger a series of side reactions that lead to rapid capacity fading in high energy density LIBs. It is worth noting that this degradation process is highly dependent on the polarity of the solvents. In this work, a deep potential (DP) model is trained with a certain commercial electrolyte formula through a machine learning method. H3O+ is anchored with polar solvents, making it difficult to approach the PF6-, and suppressing the degradation process quickly at room temperature. Control experiments and simulations at different temperatures or concentrations are also performed to verify it. This work proposes a precise model to describe the solvation structure quantitatively and offers a new perspective on the degradation mechanism of PF6- in polar solvents.

10.
Blood ; 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579286

ABSTRACT

The overall prognosis of acute myeloid leukemia (AML) remains dismal, largely due to the inability of current therapies to kill leukemia stem cells (LSCs) with intrinsic resistance. Loss of the stress sensor GADD45A is implicated in poor clinical outcomes but its role in LSCs and AML pathogenesis is unknown. Here we define GADD45A as a key downstream target of LGR4 oncogenic signaling and discover a regulatory role for GADD45A loss in promoting leukemia-initiating activity and oxidative resistance in LGR4/HOXA9-dependent AML, a poor prognosis subset of leukemia. Knockout of GADD45A enhances AML progression in murine and patient-derived xenograft (PDX) mouse models. Deletion of GADD45A induces substantial mutations, increases LSC self-renewal and stemness in vivo and reduces levels of reactive oxygen species (ROS), accompanied by decreased response to ROS-associated genotoxic agents (e.g., ferroptosis inducer RSL3) and acquisition of an increasingly aggressive phenotype upon serial transplantation in mice. Our single-cell CITE-seq analysis on patient-derived LSCs in PDX mice and subsequent functional studies in murine LSCs and primary AML patient cells show that loss of GADD45A is associated with resistance to ferroptosis (an iron-dependent oxidative cell death caused by ROS accumulation) through aberrant activation of antioxidant pathways related to iron and ROS detoxification such as FTH1 and PRDX1, upregulation of which correlates with unfavorable outcomes in AML patients. These results reveal a therapy resistance mechanism contributing to poor prognosis and support a role for GADD45A loss as a critical step for leukemia-initiating activity and as a target to overcome resistance in aggressive leukemia.

11.
Medicine (Baltimore) ; 103(17): e37898, 2024 Apr 26.
Article in English | MEDLINE | ID: mdl-38669428

ABSTRACT

Nonischemic cardiomyopathy (NICM) is a major cause of advanced heart failure, and the morbidity and mortality associated with NICM are serious medical problems. However, the etiology of NICM is complex and the related mechanisms involved in its pathogenesis remain unclear. The microarray datasets GSE1869 and GSE9128 retrieved from the Gene Expression Omnibus database were used to identify differentially expressed genes (DEGs) between NICM and normal samples. The co-expressed genes were identified using Venn diagrams. Kyoto Encyclopedia of Genes and Genomes pathway analyses and gene ontology enrichment were used to clarify biological functions and signaling pathways. Analysis of protein-protein interaction networks using Search Tool for the Retrieval of Interacting Genes/Proteins online to define the hub genes associated with NICM pathogenesis. A total of 297 DEGs were identified from GSE1869, 261 of which were upregulated genes and 36 were downregulated genes. A total of 360 DEGs were identified from GSE9128, 243 of which were upregulated genes and 117 were downregulated genes. In the 2 datasets, the screening identified 36 co-expressed DEGs. Kyoto Encyclopedia of Genes and Genomes pathway and gene ontology analysis showed that DEGs were mainly enriched in pantothenate and CoA biosynthesis, beta-alanine metabolism, kinetochore, G-protein beta/gamma-subunit complex, and other related pathways. The PPI network analysis revealed that DUSP6, EGR1, ZEB2, and XPO1 are the 4 hub genes of interest in the 2 datasets. Bioinformatics analysis of hub genes and key signaling pathways is an effective way to elucidate the mechanisms involved in the development of NICM. The results will facilitate further studies on the pathogenesis and therapeutic targets of NICM.


Subject(s)
Cardiomyopathies , Computational Biology , Protein Interaction Maps , Cardiomyopathies/genetics , Humans , Computational Biology/methods , Protein Interaction Maps/genetics , Gene Expression Profiling/methods , Gene Regulatory Networks , Signal Transduction/genetics , Gene Ontology , Databases, Genetic
12.
Environ Pollut ; 350: 124037, 2024 Jun 01.
Article in English | MEDLINE | ID: mdl-38677457

ABSTRACT

Ionizing radiation (mainly including gamma ray and electron beam) technology provides a more efficient and ecological option for dye-containing wastewater treatment, which is supported by its successful achievements in industrial-scale applications. However, the degradation pathway of triphenylmethane dyes by radiation technology is still unclear. In this study, crystal violet (CV) was selected as representative cationic triphenylmethane dye, the decolorization and degradation performance by electron beam radiation technology was systematically evaluated. The results showed that CV can be efficiently decolorized and mineralized by radiation, and its degradation kinetics followed the first-order kinetic model. The effect of inorganic anions and chelating agents commonly existed in dye-containing wastewater on CV decolorization and total organic carbon (TOC) removal was explored. Quenching experiments, density functional theory (DFT) calculation and high performance liquid chromatography mass spectrometry (HPLC-MS) analysis were employed to reveal CV decolorization and degradation mechanism and pathway, which mainly included N-demethylation, triphenylmethane chromophore cleavage, ring-opening of aromatic products and further oxidation to carboxylic acid, and mineralization to CO2 and H2O. Additionally, electron beam radiation/PMS process was explored to decrease the absorbed dose required for decolorization and degradation, and the synergetic effect of radiation with PMS was elucidated. More importantly, the findings of this study would provide the support for treating actual dyeing wastewater by electron beam radiation technology.


Subject(s)
Gentian Violet , Wastewater , Water Pollutants, Chemical , Gentian Violet/chemistry , Water Pollutants, Chemical/chemistry , Wastewater/chemistry , Coloring Agents/chemistry , Peroxides/chemistry , Waste Disposal, Fluid/methods , Water Decolorization/methods , Electrons , Kinetics
13.
Anal Chem ; 96(17): 6588-6598, 2024 Apr 30.
Article in English | MEDLINE | ID: mdl-38619494

ABSTRACT

How timely identification and determination of pathogen species in pathogen-contaminated foods are responsible for rapid and accurate treatments for food safety accidents. Herein, we synthesize four aggregation-induced emissive nanosilicons with different surface potentials and hydrophobicities by encapsulating four tetraphenylethylene derivatives differing in functional groups. The prepared nanosilicons are utilized as receptors to develop a nanosensor array according to their distinctive interactions with pathogens for the rapid and simultaneous discrimination of pathogens. By coupling with machine-learning algorithms, the proposed nanosensor array achieves high performance in identifying eight pathogens within 1 h with high overall accuracy (93.75-100%). Meanwhile, Cronobacter sakazakii and Listeria monocytogenes are taken as model bacteria for the quantitative evaluation of the developed nanosensor array, which can successfully distinguish the concentration of C. sakazakii and L. monocytogenes at more than 103 and 102 CFU mL-1, respectively, and their mixed samples at 105 CFU mL-1 through the artificial neural network. Moreover, eight pathogens at 1 × 104 CFU mL-1 in milk can be successfully identified by the developed nanosensor array, indicating its feasibility in monitoring food hazards.


Subject(s)
Food Microbiology , Listeria monocytogenes , Machine Learning , Listeria monocytogenes/isolation & purification , Cronobacter sakazakii/isolation & purification , Silicon Dioxide/chemistry , Point-of-Care Systems , Animals , Milk/microbiology , Milk/chemistry , Biosensing Techniques , Neural Networks, Computer
14.
Anal Chem ; 96(12): 5046-5055, 2024 Mar 26.
Article in English | MEDLINE | ID: mdl-38488055

ABSTRACT

Bimodal-type multiplexed immunoassays with complementary mode-based correlation analysis are gaining increasing attention for enhancing the practicability of the lateral flow immunoassay (LFIA). Nonetheless, the restriction in visually indistinguishable multitargets induced by a single fluorescent color and difficulty in single acceptor ineffectual fluorescence quenching due to the various spectra of multiple different donors impede the further execution of colorimetric-fluorescence bimodal-type multiplexed LFIAs. Herein, the precise spectral overlap-based donor-acceptor pair construction strategy is proposed by regulating the size of the nanocore, coating it with an appropriate nanoshell, and selecting a suitable fluorescence donor with distinct colors. By in situ coating Prussian blue nanoparticles (PBNPs) on AuNPs with a tunable size and absorption spectrum, the resultant APNPs demonstrate efficient fluorescence quenching ability, higher colloidal stability, remarkable colorimetric intensity, and an enhanced antibody coupling efficiency, all of which facilitate highly sensitive bimodal-type LFIA analysis. Following integration with competitive-type immunoreaction, this precise spectral overlap-supported spatial separation traffic light-typed colorimetric-fluorescence dual-response assay (coined as the STCFD assay) with the limits of detection of 0.013 and 0.152 ng mL-1 for ractopamine and clenbuterol, respectively, was proposed. This work illustrates the superiority of the rational design of a precise spectral overlap-based donor-acceptor pair, hinting at the enormous potential of the STCFD assay in the point-of-care field.


Subject(s)
Clenbuterol , Metal Nanoparticles , Gold , Immunoassay , Chemical Phenomena , Limit of Detection
15.
Front Plant Sci ; 15: 1305358, 2024.
Article in English | MEDLINE | ID: mdl-38529067

ABSTRACT

Introduction: Early detection of leaf diseases is necessary to control the spread of plant diseases, and one of the important steps is the segmentation of leaf and disease images. The uneven light and leaf overlap in complex situations make segmentation of leaves and diseases quite difficult. Moreover, the significant differences in ratios of leaf and disease pixels results in a challenge in identifying diseases. Methods: To solve the above issues, the residual attention mechanism combined with atrous spatial pyramid pooling and weight compression loss of UNet is proposed, which is named RAAWC-UNet. Firstly, weights compression loss is a method that introduces a modulation factor in front of the cross-entropy loss, aiming at solving the problem of the imbalance between foreground and background pixels. Secondly, the residual network and the convolutional block attention module are combined to form Res_CBAM. It can accurately localize pixels at the edge of the disease and alleviate the vanishing of gradient and semantic information from downsampling. Finally, in the last layer of downsampling, the atrous spatial pyramid pooling is used instead of two convolutions to solve the problem of insufficient spatial context information. Results: The experimental results show that the proposed RAAWC-UNet increases the intersection over union in leaf and disease segmentation by 1.91% and 5.61%, and the pixel accuracy of disease by 4.65% compared with UNet. Discussion: The effectiveness of the proposed method was further verified by the better results in comparison with deep learning methods with similar network architectures.

16.
Sci Total Environ ; 926: 171708, 2024 May 20.
Article in English | MEDLINE | ID: mdl-38494015

ABSTRACT

Current problems of existing heavy metal-removing technologies, especially for nanomaterials-based ones, are typically single metal ion-specific, high-cost and collected difficult. Herein, facile modification of commercial sulfur creates a versatile adsorbent platform to address challenges. The versatile adsorbent can be easily prepared through solvothermal treatment of a saturated commercial sulfur solution, followed by water precipitation on a commercial foam that eliminates the need for separation. Interestingly, the solvothermal treatment endows the resulting nanosulfur with sulfate acid groups (hard Lewis base), sulfur anions (soft base), and sulfite groups (borderline base), promising the coordination of all types of heavy metal ions (Lewis acids). As such, this versatile adsorbent with well-distributed adsorption sites exhibits highly effective heavy metal adsorption capacity towards diverse heavy metal ions for both single-component and multi-component adsorption, including soft, hard, borderline Lewis metal ions, with ultra-high adsorption ability (e.g., 903.79 mg g-1 for Cu2+). These findings highlighted the potential of this low-cost sulfur-based adsorbent to address the arising challenges in ensuring clean water.

17.
Chemosphere ; 353: 141586, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38452980

ABSTRACT

Heterogeneous activation of peroxomonosulfate (PMS) has been extensively studied for the degradation of antibiotics. The cobalt ferrite spinel exhibits good activity in the PMS activation, but suffers from the disadvantage of low PMS utilization efficiency. Herein, the nanocomposites including FeS, CoS2, CoFe2O4 and Fe2O3 were synthesized by hydrothermal method and used for the first time to activate PMS for the removal of sulfamethoxazole (SMX). The nanocomposites showed superior catalytic activity in which the SMX could be completely removed at 40 min, 0.1 g L-1 nanocomposites and 0.4 mM PMS with the first order kinetic constant of 0.2739 min-1. The PMS utilization efficiency was increased by 29.4% compared to CoFe2O4. Both radicals and non-radicals contributed to the SMX degradation in which high-valent metal oxo dominated. The mechanism analysis indicated that sulfur modification, on one hand, enhanced the adsorption of nanocomposites for PMS, and promoted the redox cycles of Fe2+/Fe3+ and Co2+/Co3+ on the other hand. This study provides new way to enhance the catalytic activity and PMS utilization efficiency of spinel cobalt ferrite.


Subject(s)
Aluminum Oxide , Cobalt , Ferric Compounds , Magnesium Oxide , Nanocomposites , Sulfamethoxazole , Peroxides
18.
Chemosphere ; 354: 141660, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38462181

ABSTRACT

Production of medium-chain fatty acids (MCFAs) from sewage sludge has dual effects on valuable sludge disposal and renewable energy generation, while low efficiency limits its application. Biochar addition is considered an effective method to improve MCFAs production. In this study, the influence of biochar adding strategies (i.e., adding biochar in acidification or chain elongation (CE) processes) on MCFAs production was explored. Results showed that by adding biochar in the acidification process, MCFAs accumulation increased by over 114%, accompanied by the highest carbon conversion efficiency (134.66%) and electron transfer efficiency of MCFAs (94.22%) by the terminal CE. Adding biochar before the acidification process better enriched CE bacteria (e.g., Paraclostridium) and strengthened the dominant metabolic pathway. In contrast, the biochar added before the CE process priorly enriched the bacteria capable of degrading organics, like unclassified_f__Dysgonomonadaceae, norank_f__norank_o__OPB41, and Acetobacterium. The differences in excessive ethanol oxidation and short-chain fatty acids accumulation induced by varied adding strategies might be responsible for this.


Subject(s)
Charcoal , Fatty Acids , Sewage , Sewage/microbiology , Anaerobiosis , Fatty Acids, Volatile , Fermentation
19.
Lab Chip ; 24(8): 2272-2279, 2024 Apr 16.
Article in English | MEDLINE | ID: mdl-38504660

ABSTRACT

A highly sensitive lateral flow immunoassay (LFIA) is developed for the enzyme-catalyzed and double-reading determination of clenbuterol (CLE), in which a new type of probe was adopted through the direct electrostatic adsorption of ultra-small copper-gold bimetallic enzyme mimics (USCGs) and monoclonal antibodies. In the assay, based on the peroxidase activity of USCG, the chromogenic substrate TMB-H2O2 was introduced to trigger its color development, and the results were compared with those before catalysis. The detection sensitivity after catalysis is 0.03 ng mL-1 under optimal circumstances, which is 6-fold better than that of the traditional Au NPs-based LFIA and 2-fold greater than that before catalysis. This approach was successfully applied to the detection of CLE in milk, pork and mutton samples with an optimum assay time of 7 min and best catalytic time of 80 s, after which satisfactory recoveries of 98.53-117.79% were obtained. Cu-Au nanoparticles as a signal tag and the use of their nanozyme properties are the first applications in the field of LFIA. This work can be a promising exhibition for the application of a cheaper substitute for HRP, ultra-small bimetallic enzyme mimics, in LFIAs.


Subject(s)
Clenbuterol , Metal Nanoparticles , Limit of Detection , Copper , Gold/chemistry , Hydrogen Peroxide , Metal Nanoparticles/chemistry , Catalysis , Immunoassay/methods
20.
Chemosphere ; 354: 141730, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38492682

ABSTRACT

In this study, Fe0@Fe3O4 was synthesized and used to remove U(VI) from groundwater. Different experimental conditions and cycling experiments were used to investigate the performance of Fe0@Fe3O4 in the U(VI) removal, and the XRD, TEM, XPS and XANES techniques were employed to characterize the Fe0@Fe3O4. The results showed that the U(VI) removal efficiency of Fe0@Fe3O4 was 48.5 mg/g that was higher than the sum of removal efficiency of Fe0 and Fe3O4. The uranium on the surface of Fe0@Fe3O4 mainly existed as U(IV), followed by U(VI) and U(V). The Fe0 content decreased after reaction, while the Fe3O4 content increased. Based on the results of experiments and characterization, the enhanced removal efficiency of Fe0@Fe3O4 was attributed to the synergistic effect of Fe0 and Fe3O4 in which Fe3O4 accelerated the Fe0 corrosion that promoted the progressively formation of Fe(II) that promoted the reduction of adsorbed U(VI) to U(IV) and incorporated U(VI) to U(V). The performance of Fe0@Fe3O4 at near-neutrality condition was better than at acidic and alkalic conditions. The chloride ions, sulfate ions and nitrate ions showed minor effect on the Fe0@Fe3O4 performance, while carbonate ions exhibited significant inhibition. The metal cations showed different effect on the Fe0@Fe3O4 performance. The removal efficiency of Fe0@Fe3O4 decreased with the number of cycling experiment. Ionizing radiation could regenerate the used Fe0@Fe3O4. This study provides insight into the U(VI) removal by Fe0@Fe3O4 in aqueous solution.


Subject(s)
Iron , Uranium , Water , Chlorides , Halogens , Adsorption
SELECTION OF CITATIONS
SEARCH DETAIL
...