Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 7 de 7
Filter
Add more filters










Database
Language
Publication year range
1.
Sensors (Basel) ; 12(3): 2983-95, 2012.
Article in English | MEDLINE | ID: mdl-22736988

ABSTRACT

We report on a refractive index sensor using a photonic crystal fiber (PCF) interferometer which was realized by fusion splicing a short section of PCF (Blaze Photonics, LMA-10) between two standard single mode fibers. The fully collapsed air holes of the PCF at the spice regions allow the coupling of PCF core and cladding modes that makes a Mach-Zehnder interferometer. The transmission spectrum exhibits sinusoidal interference pattern which shifts differently when the cladding/core surface of the PCF is immersed with different RI of the surrounding medium. Experimental results using wavelength-shift interrogation for sensing different concentrations of sucrose solution show that a resolution of 1.62 × 10(-4)-8.88 × 10(-4) RIU or 1.02 × 10(-4)-9.04 × 10(-4) RIU (sensing length for 3.50 or 5.00 cm, respectively) was achieved for refractive indices in the range of 1.333 to 1.422, suggesting that the PCF interferometer are attractive for chemical, biological, biochemical sensing with aqueous solutions, as well as for civil engineering and environmental monitoring applications.


Subject(s)
Interferometry/methods , Fiber Optic Technology , Interferometry/instrumentation , Optics and Photonics , Refractometry
2.
Sensors (Basel) ; 12(4): 4578-93, 2012.
Article in English | MEDLINE | ID: mdl-22666046

ABSTRACT

This paper presents the development and assessment of two types of Long Period Fiber Grating (LPFG)-based sensors including a mobile liquid level sensor and a reflective sensor for the measurement of liquid level and fluid-flow velocity. Shewhart control charts were used to assess the liquid level sensing capacity and reliability of the mobile CO(2)-laser engraved LPFG sensor. There were ten groups of different liquid level experiment and each group underwent ten repeated wavelength shift measurements. The results showed that all measurands were within the control limits; thus, this mobile sensor was reliable and exhibited at least 100-cm liquid level measurement capacity. In addition, a reflective sensor consisting of five LPFGs in series with a reflective end has been developed to evaluate the liquid level and fluid-flow velocity. These five LPFGs were fabricated by the electrical arc discharge method and the reflective end was coated with silver by Tollen's test. After each liquid level experiment was performed five times, the average values of the resonance wavelength shifts for LPFG Nos. 1-5 were in the range of 1.35-9.14 nm. The experimental findings showed that the reflective sensor could be used to automatically monitor five fixed liquid levels. This reflective sensor also exhibited at least 100-cm liquid level measurement capacity. The mechanism of the fluid-flow velocity sensor was based on analyzing the relationship among the optical power, time, and the LPFG's length. There were two types of fluid-flow velocity measurements: inflow and drainage processes. The differences between the LPFG-based fluid-flow velocities and the measured average fluid-flow velocities were found in the range of 8.7-12.6%. For the first time to our knowledge, we have demonstrated the feasibility of liquid level and fluid-flow velocity sensing with a reflective LPFG-based sensor without modifying LPFGs or coating chemical compounds.

3.
Sensors (Basel) ; 11(9): 8550-68, 2011.
Article in English | MEDLINE | ID: mdl-22164091

ABSTRACT

Optical fiber sensors based on waveguide technology are promising and attractive in chemical, biotechnological, agronomy, and civil engineering applications. A microfluidic system equipped with a long-period fiber grating (LPFG) capable of measuring chloride ion concentrations of several sample materials is presented. The LPFG-based microfluidic platform was shown to be effective in sensing very small quantities of samples and its transmitted light signal could easily be used as a measurand. The investigated sample materials included reverse osmosis (RO) water, tap water, dilute aqueous sample of sea sand soaked in RO water, aqueous sample of sea sand soaked in RO water, dilute seawater, and seawater. By employing additionally a chloride ion-selective electrode sensor for the calibration of chloride-ion concentration, a useful correlation (R2 = 0.975) was found between the separately-measured chloride concentration and the light intensity transmitted through the LPFG at a wavelength of 1,550 nm. Experimental results show that the sensitivity of the LPFG sensor by light intensity interrogation was determined to be 5.0 × 10(-6) mW/mg/L for chloride ion concentrations below 2,400 mg/L. The results obtained from the analysis of data variations in time-series measurements for all sample materials show that standard deviations of output power were relatively small and found in the range of 7.413 × 10(-5)-2.769 × 10(-3) mW. In addition, a fairly small coefficients of variations were also obtained, which were in the range of 0.03%-1.29% and decreased with the decrease of chloride ion concentrations of sample materials. Moreover, the analysis of stability performance of the LPFG sensor indicated that the random walk coefficient decreased with the increase of the chloride ion concentration, illustrating that measurement stability using the microfluidic platform was capable of measuring transmitted optical power with accuracy in the range of -0.8569 mW/ [Formula: see text] to -0.5169 mW/ [Formula: see text]. Furthermore, the bias stability was determined to be in the range of less than 6.134 × 10(-8) mW/h with 600 s time cluster to less than 1.412 × 10(-6) mW/h with 600 s time cluster. Thus, the proposed LPFG-based microfluidic platform has the potential for civil, chemical, biological, and biochemical sensing with aqueous solutions. The compact (3.5 × 4.2 cm), low-cost, real-time, small-volume (∼70 µL), low-noise, and high-sensitive chloride ion sensing system reported here could hopefully benefit the development and applications in the field of chemical, biotechnical, soil and geotechnical, and civil engineering.


Subject(s)
Chlorides/analysis , Microfluidics/instrumentation , Osmosis
4.
Sensors (Basel) ; 10(11): 10105-27, 2010.
Article in English | MEDLINE | ID: mdl-22163460

ABSTRACT

This paper presents the feasibility of utilizing fiber Bragg grating (FBG) and long-period fiber grating (LPFG) sensors for nondestructive evaluation (NDE) of infrastructures using Portland cement concretes and asphalt mixtures for temperature, strain, and liquid-level monitoring. The use of hybrid FBG and LPFG sensors is aimed at utilizing the advantages of two kinds of fiber grating to implement NDE for monitoring strains or displacements, temperatures, and water-levels of infrastructures such as bridges, pavements, or reservoirs for under different environmental conditions. Temperature fluctuation and stability tests were examined using FBG and LPFG sensors bonded on the surface of asphalt and concrete specimens. Random walk coefficient (RWC) and bias stability (BS) were used for the first time to indicate the stability performance of fiber grating sensors. The random walk coefficients of temperature variations between FBG (or LPFG) sensor and a thermocouple were found in the range of -0.7499 °C/ [square root]h to -1.3548 °C/ [square root]h. In addition, the bias stability for temperature variations, during the fluctuation and stability tests with FBG (or LPFG) sensors were within the range of 0.01 °C/h with a 15-18 h time cluster to 0.09 °C/h with a 3-4 h time cluster. This shows that the performance of FBG or LPFG sensors is comparable with that of conventional high-resolution thermocouple sensors under rugged conditions. The strain measurement for infrastructure materials was conducted using a packaged FBG sensor bonded on the surface of an asphalt specimen under indirect tensile loading conditions. A finite element modeling (FEM) was applied to compare experimental results of indirect tensile FBG strain measurements. For a comparative analysis between experiment and simulation, the FEM numerical results agreed with those from FBG strain measurements. The results of the liquid-level sensing tests show the LPFG-based sensor could discriminate five stationary liquid-levels and exhibits at least 1,050-mm liquid-level measurement capacity. Thus, the hybrid FBG and LPFG sensors reported here could benefit the NDE development and applications for infrastructure health monitoring such as strain, temperature and liquid-level measurements.


Subject(s)
Fiber Optic Technology/methods , Optical Fibers , Finite Element Analysis , Temperature
5.
Sensors (Basel) ; 10(12): 11174-88, 2010.
Article in English | MEDLINE | ID: mdl-22163519

ABSTRACT

This work addresses the development and assessment of a fiber optical viscometer using a simple and low-cost long-period fiber grating (LPFG) level sensor and a capillary tube mechanism. Previous studies of optical viscosity sensors were conducted by using different optical sensing methods. The proposed optical viscometer consists of an LPFG sensor, a temperature-controlled chamber, and a cone-shaped reservoir where gravitational force could cause fluid to flow through the capillary tube. We focused on the use of LPFGs as level sensors and the wavelength shifts were not used to quantify the viscosity values of asphalt binders. When the LPFG sensor was immersed in the constant volume (100 mL) AC-20 asphalt binder, a wavelength shift was observed and acquired using LabVIEW software and GPIB controller. The time spent between empty and 100 mL was calculated to determine the discharge time. We simultaneously measured the LPFG-induced discharge time and the transmission spectra both in hot air and AC-20 asphalt binder at five different temperatures, 60, 80, 100, 135, and 170 Celsius. An electromechanical rotational viscometer was also used to measure the viscosities, 0.15-213.80 Pa·s, of the same asphalt binder at the above five temperatures. A non-linear regression analysis was performed to convert LPFG-induced discharge time into viscosities. Comparative analysis shows that the LPFG-induced discharge time agreed well with the viscosities obtained from the rotational viscometer.


Subject(s)
Capillary Tubing , Equipment Design , Fiber Optic Technology/instrumentation , Optical Fibers , Rheology/instrumentation , Cost-Benefit Analysis , Equipment Design/economics , Fiber Optic Technology/economics , Fiber Optic Technology/methods , Hydrocarbons/chemistry , Microfluidics/economics , Microfluidics/instrumentation , Microfluidics/methods , Microtechnology/methods , Models, Biological , Rheology/economics , Rheology/methods , Time Factors , Viscosity
6.
Sensors (Basel) ; 10(7): 6582-93, 2010.
Article in English | MEDLINE | ID: mdl-22163567

ABSTRACT

A fiber grating sensor capable of distinguishing between temperature and strain, using a reference and a dual-wavelength fiber Bragg grating, is presented. Error analysis and measurement uncertainty for this sensor are studied theoretically and experimentally. The measured root mean squared errors for temperature T and strain ε were estimated to be 0.13 °C and 6 µÎµ, respectively. The maximum errors for temperature and strain were calculated as 0.00155 T + 2.90 × 10(-6) ε and 3.59 × 10(-5) ε + 0.01887 T, respectively. Using the estimation of expanded uncertainty at 95% confidence level with a coverage factor of k = 2.205, temperature and strain measurement uncertainties were evaluated as 2.60 °C and 32.05 µÎµ, respectively. For the first time, to our knowledge, we have demonstrated the feasibility of estimating the measurement uncertainty for simultaneous strain-temperature sensing with such a fiber grating sensor.


Subject(s)
Temperature , Uncertainty
7.
Int J Cancer ; 123(7): 1616-22, 2008 Oct 01.
Article in English | MEDLINE | ID: mdl-18649363

ABSTRACT

MicroRNAs (miRNAs) are important gene regulators, which are often deregulated in cancers. In this study, the authors analyzed the microRNAs profiles of 78 matched cancer/noncanerous liver tissues from HCC patients and 10 normal liver tissues and found that 69 miRNAs were differentially expressed between hepatocellular carcinoma (HCC) and corresponding noncancerous liver tissues (N). Then the expressions of 8 differentially expressed miRNAs were validated by real time RT PCR. The set of differentially expressed miRNAs could distinctly classify HCC, N and normal liver tissues (NL). Moreover, some of these differentially expressed miRNAs were related to the clinical factors of HCC patients. Most importantly, Kaplan-Meier estimates and the log-rank test showed that high expression of hsa-miR-125b was correlated with good survival of HCC patients (hazard ratio, 1.787, 95% confidence interval, 1.020-3.133, p = 0.043). The transfection assay showed that overexpression of miR-125b in HCC cell line could obviously suppress the cell growth and phosporylation of Akt. In conclusion, the authors have demonstrated the diagnostic miRNA profile for HCC, and for the first time, identified the miR-125b with predictive significance for HCC prognosis.


Subject(s)
Carcinoma, Hepatocellular/pathology , Liver Neoplasms/pathology , MicroRNAs/genetics , Blotting, Western , Carcinoma, Hepatocellular/diagnosis , Carcinoma, Hepatocellular/genetics , Cell Line, Tumor , Cell Proliferation , Chromosome Mapping , Humans , Liver/enzymology , Liver/metabolism , Liver Neoplasms/diagnosis , Liver Neoplasms/genetics , Oligonucleotide Array Sequence Analysis , Phosphorylation , Prognosis , Proto-Oncogene Proteins c-akt/metabolism , Reverse Transcriptase Polymerase Chain Reaction
SELECTION OF CITATIONS
SEARCH DETAIL
...