Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 4 de 4
Filter
Add more filters










Database
Language
Publication year range
1.
Chem Asian J ; 8(10): 2453-8, 2013 Oct.
Article in English | MEDLINE | ID: mdl-23857954

ABSTRACT

Iron-oxide nanocrystals (IONCs) have been widely researched, owing to their unique physical and chemical properties. Herein, a new strategy that involves an electrospinning technique with the addition of a surfactant is reported as an effective method for the fabrication of shaped IONCs. With the same precursor compositions, only iron-oxide nanoparticles were obtained by using a sol-gel method without electrospinning. However, when the electrospinning technique was introduced, IONCs with special geometrical shapes (e.g., octahedral) were obtained. Characterization data indicated that the IONCs were composed of magnetite (Fe3O4) and maghemite (γ-Fe2O3), the ratio of which could be tuned by changing the concentration of the surfactants in the precursor solutions. A mechanism for the formation of IONCs is also proposed. The effect of surfactant on the decomposition of the iron complex is the main motivation for the formation of IONCs. In the sol-gel method without electrospinning, this effect is completely inhibited by the disturbance of long molecular chains. However, in the electrospinning strategy, such disturbance can be completely or partially diminished by the electrical force field during the electrospinning process and by the spatial effect of the nanofibers, thus leading to the formation of IONCs. Finally, the magnetic properties of the obtained IONCs were investigated. This strategy is versatile and environmentally friendly and it will be applicable to the synthesis of many other functional inorganic materials.

2.
J Nanosci Nanotechnol ; 12(3): 2496-502, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22755080

ABSTRACT

A reusable photocatalytic TiO2/CoFe2O4 composite nanofiber was directly formed by using a vertical two-spinneret electrospinning process and sol-gel method, followed by heat treatment at 550 degrees C for 2 h. The high photocatalytic activity of the composite nanofibers depends on the good morphology of the fibers and the appropriate calcination temperature. The crystal structure and magnetic properties of the fibers were characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), energy dispersion spectroscopy (EDS), transmission electron microscope (TEM) and vibrating sample magnetometer (VSM). The photocatalytic activity of the TiO2/CoFe2O4 fibers was investigated through ultraviolet-visible absorbance following the photo-oxidative decomposition of phenol. Meanwhile, the presence of CoFe2O4 not only broadens the response region of visible light, but also enhances the absorbance of UV light. Furthermore, these fibers displayed photocatalytic activity associated with magnetic activity of CoFe2O4 ferrites, allowing easy separated of the photocatalysts after the photo-oxidative process and effectively avoided the secondary pollution of the treated water.

3.
J Nanosci Nanotechnol ; 12(3): 2522-8, 2012 Mar.
Article in English | MEDLINE | ID: mdl-22755084

ABSTRACT

A novel magnetic separable composite photocatalytic nanofiber consisting of TiO2 as the major phase, CeO(2-y) and CoFe2O4 as the dopant phase was prepared by sol-gel method and electrospinning technique, and characterized by X-ray diffraction (XRD), scanning electron microscopy (SEM), transmission electron microscopy (TEM), UV-vis diffuse reflectance spectrum (UV-vis DRS) and vibrating sample magnetometer (VSM). The photocatalytic activity of the resultant CoFe2O4-TiO2 and CeO(2-y)/CoFe2O4-TiO2 nanofibers was evaluated by photodegradation of methylene blue (MB) in an aqueous solution under xenon lamp (the irradiation spectrum energy distribution is similar to sunlight) irradiation in a photochemical reactor. The results showed that the dopant of Ce could affect the absorbance ability and photo-response range. The sample containing 1.0 wt% CeO(2-y) exhibited the highest degradation with 35% for MB under simulate solar light irradiation. Furthermore, the as-synthesized composite photocatalytic nanofibers could be separated easily by an external magnetic field, thus it might hold potential for application in wastewater treatment.

4.
J Nanosci Nanotechnol ; 11(5): 3894-8, 2011 May.
Article in English | MEDLINE | ID: mdl-21780383

ABSTRACT

Magnetoplumbite-type (M-type) SrRE(x)Fe(12-x)O19 (RE = La and Ce, x = 0-1.0) powders were prepared by a citric acid sol-gel technique and subsequent heat treatment. The crystal structure, grain size and magnetic properties were investigated by X-ray Diffraction (XRD), Scanning Electron Microscope (SEM) and vibrating sample magnetometer (VSM). The XRD patterns show that SrRE(x)Fe(12-x)O19 (RE = La and Ce) are mainly hexagonal magnetic plumbite structure, and the average grain size of 30-40 nm was calculated using the Scherer's equation based on the XRD spectrum. Substitution of Fe ion by the rare earth La ion causes a significant decrease in intrinsic coercivity (Hc) and a slight decrease in saturation magnetization (Ms) as shown in the magnetization hysteresis loops. However, the Hc rises gradually in a small wave pattern with the increase of doping content of the rare earth Ce. The relation between the crystal structure and magnetic properties was also studied in this work.

SELECTION OF CITATIONS
SEARCH DETAIL
...