Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 9 de 9
Filter
Add more filters










Database
Publication year range
1.
Neurochem Res ; 44(8): 1807-1817, 2019 Aug.
Article in English | MEDLINE | ID: mdl-31093905

ABSTRACT

Cerebral ischemic injury is a leading cause of human mortality and disability, seriously threatening human health in the world. Activin A (Act A), as a well-known neuroprotective factor, could alleviate ischemic brain injury mainly through Act A/Smads signaling. In our previous study, a noncanonical Act A/Smads signal loop with self-amplifying property was found, which strengthened the neuroprotective effect of Act A. However, this neuroprotective effect was limited due to the self-limiting behavior mediated by Smad anchor for receptor activation (SARA) protein. It was reported that microRNA-17-5p (miR-17-5p) could suppress the expression of SARA in esophageal squamous cell carcinoma. Thus we proposed that knockdown of miR-17-5p could strengthen the neuroprotective effect of Act A/Smads signal loop through SARA. To testify this hypothesis, oxygen-glucose deficiency (OGD) was introduced to highly differentiated rattus pheochromocytoma (PC12) cells. After the transfection of miR-17-5p mimic or inhibitor, the activity of Act A signal loop was quantified by the expression of phosphorylated Smad3. The results showed that suppression of miR-17-5p up-regulated the expression of SARA protein, which prolonged and strengthened the activity of Act A signaling through increased phosphorylation of downstream Smad3 and accumulation of Act A ligand. Further luciferase assay confirmed that SARA was a direct target gene of miR-17-5p. These practical discoveries will bring new insight on the endogenous neuroprotective effects of Act A signal loop by interfering a novel target: miR-17-5p.


Subject(s)
Inhibin-beta Subunits/metabolism , MicroRNAs/genetics , Adaptor Proteins, Signal Transducing/genetics , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Hypoxia , Gene Knockdown Techniques , Glucose/deficiency , Ischemia/genetics , Ischemia/metabolism , Neuroprotection , PC12 Cells , Rats , Signal Transduction , Smad3 Protein/metabolism , Up-Regulation
2.
Int J Biol Macromol ; 118(Pt B): 1984-1988, 2018 Oct 15.
Article in English | MEDLINE | ID: mdl-30017986

ABSTRACT

Ischemic stroke is caused by obstructed blood supply to the brain. It is a common as well as a serious health problem worldwide, which is often linked to disability and mortality. Here we studied, under the conditions of oxygen glucose deprivation (OGD), the expression of Notch signaling pathway proteins in PC12 cells. PC12 cells were stimulated and converted into neuron-like cells by nerve growth factor. Exposure to OGD was used as an in vitro model of cerebral hypoxia-ischemia. Our findings demonstrate that, after 3 h of OGD exposure, the expression of Notch1, Hes1 and Hes5 significantly increased, on both mRNA and protein levels. This effect gradually reduced with continuous OGD treatment, but the expression levels of these three genes remained higher, compared to untreated controls, even after 24 h of OGD exposure. Our results suggest that OGD exposure up-regulates the expression of Notch1, Hes1 and Hes5, which are important participants in Notch signaling pathway. Since their regulatory roles appear to change dynamically with the extension of OGD, the activation of the Notch pathway may play an important role in cerebral ischemic injury.


Subject(s)
Glucose/metabolism , Oxygen/metabolism , Receptors, Notch/metabolism , Signal Transduction/genetics , Transcriptome , Animals , Apoptosis/genetics , Cell Differentiation/genetics , PC12 Cells , Rats
3.
Neural Regen Res ; 12(5): 779-786, 2017 May.
Article in English | MEDLINE | ID: mdl-28616035

ABSTRACT

Activin A, a member of the transforming growth factor-beta superfamily, plays a neuroprotective role in multiple neurological diseases. Endoplasmic reticulum (ER) stress-mediated apoptotic and autophagic cell death is implicated in a wide range of diseases, including cerebral ischemia and neurodegenerative diseases. Thapsigargin was used to induce PC12 cell death, and Activin A was used for intervention. Our results showed that Activin A significantly inhibited morphological changes in thapsigargin-induced apoptotic cells, and the expression of apoptosis-associated proteins [cleaved-caspase-12, C/EBP homologous protein (CHOP) and cleaved-caspase-3] and biomarkers of autophagy (Beclin-1 and light chain 3), and downregulated the expression of thapsigargin-induced ER stress-associated proteins [inositol requiring enzyme-1 (IRE1), tumor necrosis factor receptor-associated factor 2 (TRAF2), apoptosis signal-regulating kinase 1 (ASK1), c-Jun N-terminal kinase (JNK) and p38]. The inhibition of thapsigargin-induced cell death was concentration-dependent. These findings suggest that administration of Activin A protects PC12 cells against ER stress-mediated apoptotic and autophagic cell death by inhibiting the activation of the IRE1-TRAF2-ASK1-JNK/p38 cascade.

4.
Biochem Biophys Res Commun ; 480(3): 355-361, 2016 Nov 18.
Article in English | MEDLINE | ID: mdl-27769861

ABSTRACT

Activin A (Act A), a member of the transforming growth factor-beta (TGF-ß), reduces neuronal apoptosis during cerebral ischemia through Act A/Smads signaling pathway. However, little is known about the effect of Act A/Smads pathway on autophagy in neurons. Here, we found that oxygen-glucose deprivation (OGD)-induced autophagy was suppressed by exogenous Act A in a concentration-dependent manner and enhanced by Act A/Smads pathway inhibitor (ActRIIA-Ab) in neuronal PC12 cells. These results indicate that Act A/Smads pathway negatively regulates autophagy in OGD-treated PC12 cells. In addition, we found that c-Jun N-terminal kinase (JNK) and p38 mitogen-activated protein (MAP) kinase pathways are involved in the OGD-induced autophagy. The activation of JNK and p38 MAPK pathways in OGD-treated PC12 cells was suppressed by exogenous Act A and enhanced by ActRIIA-Ab. Together, our results suggest that Act A/Smads signaling pathway negatively regulates OGD-induced autophagy via suppression of JNK and p38 MAPK pathways in neuronal PC12 cells.


Subject(s)
Inhibin-beta Subunits/metabolism , MAP Kinase Signaling System/physiology , Neurons/cytology , Neurons/physiology , Oxygen/metabolism , p38 Mitogen-Activated Protein Kinases/metabolism , Animals , Autophagy/physiology , Cell Line , Cell Survival/physiology , Oxidative Stress/physiology , PC12 Cells , Rats , Smad Proteins/metabolism , Stress, Physiological/physiology
5.
Neurochem Res ; 41(5): 1073-84, 2016 May.
Article in English | MEDLINE | ID: mdl-26721511

ABSTRACT

Activin A (Act A), a member of transforming growth factor-ß superfamily, plays a neuroprotective role in multiple neurological diseases through Act A/Smads signal activation. Traditionally, the up-regulation of Act A gene and extracellular Act A accumulation show the signal activation as a linear pathway. However, one of our discoveries indicated that Act A could lead a loop signaling in ischemic injury. To clarify the characteristic of this loop signaling in a non-pathological state, we up-regulated the expression of Act A, monitored extracellular Act A accumulation and examined the activity of Act A signaling, which was quantified by the expression of phosphorylated Smad3 and the fluorescence intensity of Smad4 in nuclei. The results demonstrated a noncanonical Act A signal loop with self-amplifying property in PC12 cells. Further, it showed self-limiting behavior due to temporary activation and spontaneous attenuation. This periodic behavior of Act A signal loop was found to be regulated by the level of Smad anchor for receptor activation (SARA). Moreover, increased activity of Act A signal loop could promote PC12 cell proliferation and enhance the survival rate of cells to Oxygen-Glucose Deprivation. These practical discoveries will bring new insight on the functional outcome of Act A signaling in neurological diseases by the further understanding: loop signaling.


Subject(s)
Inhibin-beta Subunits/metabolism , Adaptor Proteins, Signal Transducing/metabolism , Animals , Cell Proliferation , Cell Survival , Feedback , Glucose/metabolism , Inhibin-beta Subunits/genetics , Oxygen/metabolism , PC12 Cells , Phosphorylation , Rats , Recombinant Proteins/genetics , Recombinant Proteins/metabolism , Signal Transduction , Smad3 Protein/metabolism , Smad4 Protein/metabolism
6.
Molecules ; 18(10): 12977-86, 2013 Oct 17.
Article in English | MEDLINE | ID: mdl-24141247

ABSTRACT

Activin A (ActA), a member of transforming growth factor-beta (TGF-b) super- family, affects many cellular processes, including ischemic stroke. Though the neuroprotective effects of exogenous ActA on oxygen-glucose deprivation (OGD) injury have already been reported by us, the endogenous role of ActA remains poorly understood. To further define the role and mechanism of endogenous ActA and its signaling in response to acute ischemic damage, we used an OGD model in PC12 cells to simulate ischemic injury on neurons in vitro. Cells were pre-treated by monoclonal antibody against activin receptor type IIA (ActRII-Ab). We found that ActRII-Ab augments ischemic injury in PC12 cells. Further, the extracellular secretion of ActA as well as phosphorylation of smad3 in PC12 cells was also up-regulated by OGD, but suppressed by ActRII-Ab. Taken together, our results show that ActRII-Ab may augment ischemic injury via blocking of transmembrane signal transduction of ActA, which confirmed the existence of endogenous neuroprotective effects derived from the ActA/Smads pathway. ActRIIA plays an important role in transferring neuronal protective signals inside. It is highly possible that ActA transmembrance signaling is a part of the positive feed-back loop for extracellular ActA secretion.


Subject(s)
Inhibin-beta Subunits/physiology , Signal Transduction , Smad3 Protein/metabolism , Activin Receptors, Type II/antagonists & inhibitors , Activin Receptors, Type II/metabolism , Animals , Cell Hypoxia , Cell Survival , Glucose/deficiency , Hypoxia-Ischemia, Brain/metabolism , PC12 Cells , Phosphorylation , Protein Processing, Post-Translational , Rats
7.
Zhonghua Jie He He Hu Xi Za Zhi ; 36(3): 191-7, 2013 Mar.
Article in Chinese | MEDLINE | ID: mdl-23856142

ABSTRACT

OBJECTIVE: To investigate the effects of miRNA-mediated down-regulation of the Bcl-2 gene on the chemotherapeutic sensitivities and mRNA transcriptions of sensitivity associated genes in human lung adenocarcinoma cell line A549 cells, and therefore to provide experimental data for improving the chemotherapeutic effects on non-small cell lung cancer (NSCLC). METHODS: The miRNA recombinant plasmid targeting to human Bcl-2 gene was designed, synthesized and stably transferred into A549 cells by lipofectin technique as the experiment group. The transcription of Bcl-2 mRNA was detected by reverse transcription-polymerase chain reaction (RT-PCR) by agarose gel electrophoresis, real-time PCR, and the protein level of Bcl-2 was measured by Western blot to confirm the function of miRNA plasmid. The cell proliferation was examined by methyl thiazolyl tetrazolium (MTT) assay. Cell cycle was measured by flow cytometry. Drug sensitivities of A549 cells to etoposide, 5-fluorouracil, cisplatin, adriamycin, vincristine, paclitaxel and navelbine were analyzed by MTT assay. The mRNA expressions of excision repair cross-complementing gene 1 (ERCC1), thymidylate synthase (TYMS), Class III ß-tubulin, topoisomerase 2 alpha (TOP2α) genes were detected by RT-PCR and real-time PCR. RESULTS: The recombinant miRNA plasmid was successfully synthesized and stably transferred into A549 cells. The transcription of Bcl-2 mRNA dramatically decreased by 98.1% in the experiment group (RQ = 0.002 ± 0.001) compared to that in the negative control group (RQ = 0.104 ± 0.003) by real-time PCR (t = 98.70, P < 0.05); and the protein level of Bcl-2 in the experiment group decreased by 57.6% by Western blot (t = 7.66, P < 0.05). The cell cycle profile showed that the low expression of Bcl-2 gene led to A549 cell cycle arrest at G1-phase. The results of MTT showed that the growth of A549 cells in the experiment group was markedly inhibited. The sensitivities of A549 cells to etoposide, cisplatin, paclitaxel, and navelbine were significantly enhanced [IC50 values in the experiment group were (107.3 ± 0.1) mg/L, (7.7 ± 0.6) mg/L, (11.5 ± 1.9) mg/L and (10.8 ± 1.6) mg/L; IC50 values in the negative control group were (145.8 ± 0.1) mg/L, (60.7 ± 1.4) mg/L, (80.6 ± 1.7) mg/L and (20.6 ± 1.7) mg/L], the respective t values being 655.33, 108.04, 82.16 and 12.48, all P < 0.05. The mRNA level of ERCC1, TYMS, and TOP2α genes in the experiment group decreased by 99.6%, 92.9% and 96.1% respectively, but Class III ß-tubulin mRNA increased by 122% compared to the negative control group (1.154 ± 0.008, 0.520 ± 0.009), the respective t values being 689.79, 689.37, 768.04 and 160.07, all P < 0.05. CONCLUSION: Targeting to inhibit antiapoptotic mitochondrial gene Bcl-2 expression in A549 cells specifically decreased the mRNA of ERCC1, TYMS, and TOP2α genes, and significantly increased the sensitivities of A549 cells to chemotherapeutic agents such as etoposide, cisplatin, paclitaxel and navelbine.


Subject(s)
Antineoplastic Agents/pharmacology , Apoptosis/drug effects , Gene Silencing , Genes, bcl-2/genetics , Proto-Oncogene Proteins c-bcl-2/genetics , Carcinoma, Non-Small-Cell Lung/drug therapy , Carcinoma, Non-Small-Cell Lung/genetics , Carcinoma, Non-Small-Cell Lung/pathology , Cell Cycle/drug effects , Cell Line, Tumor , Cisplatin/pharmacology , Down-Regulation , Drug Resistance, Neoplasm , Etoposide/pharmacology , Flow Cytometry , Gene Expression Regulation, Neoplastic , Genetic Vectors/genetics , Humans , Proto-Oncogene Proteins c-bcl-2/metabolism , RNA, Messenger/metabolism , RNA, Small Interfering/genetics , Real-Time Polymerase Chain Reaction , Transfection
8.
Neurochem Res ; 38(5): 961-71, 2013 May.
Article in English | MEDLINE | ID: mdl-23440543

ABSTRACT

Ischemic stroke is a major composition of cerebrovascular disease, seriously threatening to human health in the world. Activin A (ActA), belonging to transforming growth factor-beta (TGF-ß) super family, plays an important role in the hypoxic-ischemic brain injury through ActA/Smads pathway. While as an essential phosphorylation assistor in TGF-ß signaling, the functions and mechanisms of smad anchor for receptor activation (SARA) in ischemic brain injury remain poorly understood. To solve this problem and explore the pathological processes of ischemic stroke, we used an Oxygen-Glucose deprivation (OGD) model in nerve growth factor-induced differentiated rattus PC12 pheochromocytoma cells and down regulated the expressions of SARA by RNA interference technology. Our results showed that the repression of SARA before OGD exposure reduced the expressions of Smad2, 3, 4 mRNA and the phosphorylation rate of Smad2 protein, but it did not affect the mRNA expressions of Smad7. After OGD treatment, ActA/Smads pathway was activated and the expression of SARA in the SARA pre-repression group was significantly up-regulated. The pre-repression of SARA increased the sensitivities of nerve-like cells to OGD damage. Moreover, the mRNA expression of Smad7 which was supposed to participate in the negative feedback of ActA/Smads pathway was also elevated due to OGD injury. Taken together, these results suggest a positive role of SARA in assisting the phosphorylation of Smad2 and maintaining the neuron protective effect of ActA/Smads pathway.


Subject(s)
Glucose/metabolism , Oxygen/metabolism , Smad Proteins/metabolism , Animals , Base Sequence , DNA Primers , PC12 Cells , Rats , Reverse Transcriptase Polymerase Chain Reaction
9.
Molecules ; 17(1): 315-27, 2011 Dec 30.
Article in English | MEDLINE | ID: mdl-22210170

ABSTRACT

Ischemic cerebrovascular disease is one of the most common causes of death in the World. Exogenous activin A (ActA) protects neurons against toxicity and plays a central role in regulating the brain's response to injury. In the present study, we investigated the mechanisms involved in the neuroprotective effects of ActA in a model of hypoxic-ischemic brain disease. We found that ActA could effectively increase the survival rate of PC12 cells and relieve oxygen-glucose deprivation (OGD) damage. To clarify the neuroprotective mechanisms of ActA, the effects of ActA on the ActA/Smad pathway and on the up-regulation of inducible nitric oxide synthase (NOS) and superoxide dismutase (SOD) were investigated using OGD in PC12 cells. The results showed that ActA could increase the expression of activin receptor IIA (ActRIIA), Smad3 and Smad4 and that 50 ng/mL and 100 ng/mL of ActA could reduce NO levels and increase SOD activity by 78.9% and 79.9%, respectively. These results suggested that the neuroprotective effects of ActA in ischemia could be related to the activation of the ActA/Smad signaling pathway and to its anti-oxidant activities.


Subject(s)
Activins/pharmacology , Glucose/deficiency , Neuroprotective Agents/pharmacology , Activin Receptors, Type II/genetics , Activin Receptors, Type II/metabolism , Animals , Apoptosis , Caspase 3/metabolism , Cell Hypoxia , Cell Proliferation/drug effects , Cell Survival/drug effects , Gene Expression , Nitric Oxide/metabolism , Nitric Oxide Synthase Type II/genetics , Nitric Oxide Synthase Type II/metabolism , Oxidative Stress , PC12 Cells , Rats , Signal Transduction , Smad3 Protein/genetics , Smad3 Protein/metabolism , Smad4 Protein/genetics , Smad4 Protein/metabolism , Superoxide Dismutase/genetics , Superoxide Dismutase/metabolism , Up-Regulation
SELECTION OF CITATIONS
SEARCH DETAIL
...