Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 416
Filter
1.
Article in English | MEDLINE | ID: mdl-38721685

ABSTRACT

Hepatitis B virus (HBV) is a hepatotropic non-cytopathic virus characterized by liver-specific gene expression. HBV infection highjacks bile acid metabolism, notably impairing bile acid uptake via sodium taurocholate cotransporting polypeptide (NTCP), which is a functional receptor for HBV entry. Concurrently, HBV infection induces changes in bile acid synthesis and the size of the bile acid pool. Conversely, bile acid facilitates HBV replication and expression through the signaling molecule farnesoid X receptor (FXR), a nuclear receptor activated by bile acid. However, in HepaRG cells and primary hepatocytes, FXR agonists suppress HBV RNA expression and the synthesis and secretion of DNA. In the gut, the size and composition of the bile acid pool significantly influence the gut microbiota. In turn, the gut microbiota impacts bile acid metabolism and innate immunity, potentially promoting HBV clearance. Thus, the bile acid-gut microbiota axis represents a complex and evolving relationship in the context of HBV infection. This review explores the interplay between bile acid and gut microbiota in HBV infection and discusses the development of HBV entry inhibitors targeting NTCP.

2.
Eur J Med Chem ; 274: 116536, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38805936

ABSTRACT

G-quadruplexes (G4s) are commonly formed in the G-rich strand of telomeric DNA. Ligands targeting telomeric G4 induce DNA damage and telomere dysfunction, which makes them potential antitumor drugs. New telomeric G4 ligands with drug-likeness are still needed to be exploited, especially with their antitumor mechanisms thoroughly discussed. In this study, a novel series of quinoxaline analogs were rationally designed and synthesized. Among them, R1 was the most promising ligand for its cytotoxic effects on tumor cells and stabilizing ability with telomeric G4. Cellular assays illustrated that R1 stabilized G4 and induced R-loop accumulation in the telomeric regions, subsequently triggering DNA damage responses, cell cycle arrest in G2/M phase, apoptosis and antiproliferation. Moreover, R1 evoked immunogenic cell death (ICD) in tumor cells, which promoted the maturation of bone marrow derived dendritic cells (BMDCs). In breast cancer mouse model, R1 exhibited a significant decrease in tumor burden through the immunomodulatory effects, including the increase of CD4+ and CD8+ T cells in tumors and cytokine levels in sera. Our research provides a new idea that targeting telomeric G4 induces DNA damage responses, causing antitumor effects both in vitro and in vivo, partially due to the enhancement of immunomodulation.

3.
J Adv Res ; 2024 May 24.
Article in English | MEDLINE | ID: mdl-38797476

ABSTRACT

INTRODUCTION: Phthalates exposure is a major public health concern due to the accumulation in the environment and associated with levels of testosterone reduction, leading to adverse pregnancy outcomes. However, the relationship between phthalate-induced testosterone level decline and ferroptosis remains poorly defined. OBJECTIVES: Herein, we aimed to explore the mechanisms of phthalates-induced testosterone synthesis disorder and its relationship to ferroptosis. METHODS: We conducted validated experiments in vivo male mice model and in vitro mouse Leydig TM3 cell line, followed by RNA sequencing and metabolomic analysis. We evaluated the levels of testosterone synthesis-associated enzymes and ferroptosis-related indicators by using qRT-PCR and Western blotting. Then, we analyzed the lipid peroxidation, ROS, Fe2+ levels and glutathione system to confirm the occurrence of ferroptosis. RESULTS: In the present study, we used di (2-ethylhexyl) phthalate (DEHP) to identify ferroptosis as the critical contributor to phthalate-induced testosterone level decline. It was demonstrated that DEHP caused glutathione metabolism and steroid synthesis disorders in Leydig cells. As the primary metabolite of DEHP, mono-2-ethylhexyl phthalate (MEHP) triggered testosterone synthesis disorder accompanied by a decrease in the expression of solute carri1er family 7 member 11 (SLC7A11) protein. Furthermore, MEHP synergistically induced ferroptosis with Erastin through the increase of intracellular and mitochondrial ROS, and lipid peroxidation production. Mechanistically, overexpression of SLC7A11 counteracts the synergistic effect of co-exposure to MEHP-Erastin. CONCLUSION: Our research results suggest that MEHP does not induce ferroptosis but synergizes Erastin-induced ferroptosis. These findings provide evidence for the role of ferroptosis in phthalates-induced testosterone synthesis disorder and point to SLC7A11 as a potential target for male reproductive diseases. This study established a correlation between ferroptosis and phthalates cytotoxicity, providing a novel view point for mitigating the issue of male reproductive disease and "The Global Plastic Toxicity Debt".

4.
Biochim Biophys Acta Mol Basis Dis ; 1870(6): 167238, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38759815

ABSTRACT

Lymphatic dysfunction is a pivotal pathological mechanism underlying the development of early atherosclerotic plaques. Potential targets of lymphatic function must be identified to realize the early prevention and treatment of atherosclerosis (AS). The immunity-related GTPase Irgm1 is involved in orchestrating cellular autophagy and apoptosis. However, the effect of Irgm1 on early AS progression, particularly through alterations in lymphatic function, remains unclear. In this study, we confirmed the protective effect of lymphangiogenesis on early-AS in vivo. Subsequently, an in vivo model of early AS mice with Irgm1 knockdown shows that Irgm1 reduces early atherosclerotic plaque burden by promoting lymphangiogenesis. Given that lymphatic endothelial cell (LEC) autophagy significantly contributes to lymphangiogenesis, Irgm1 may enhance lymphatic circulation by promoting LEC autophagy. Moreover, Irgm1 orchestrates autophagy in LECs by inhibiting mTOR and facilitating nuclear translocation of Tfeb. Collectively, these processes lead to lymphangiogenesis. Thus, this study establishes a link between Irgm1 and early AS, thus revealing a novel mechanism by which Irgm1 exerts an early protective influence on AS within the context of lymphatic circulation. The insights gained from this study have the potential to revolutionize the approach and management of AS onset.

6.
J Alzheimers Dis ; 2024 May 23.
Article in English | MEDLINE | ID: mdl-38788070

ABSTRACT

Background: Reliable blood biomarkers are crucial for early detection and treatment evaluation of cognitive impairment, including Alzheimer's disease and other dementias. Objective: To examine whether plasma biomarkers and their combination are different between older people with mild cognitive impairment (MCI) and cognitively normal individuals, and to explore their relations with cognitive performance. Methods: This cross-sectional study included 250 older adults, including 124 participants with MCI, and 126 cognitively normal participants. Plasma brain-derived neurotrophic factor (BDNF), irisin and clusterin were measured, and BDNF/irisin ratio was calculated. Global cognition was evaluated by the Montreal Cognitive Assessment. Results: Plasma irisin levels, but not BDNF, were significantly different between MCI group and cognitively normal group. Higher irisin concentration was associated with an increased probability for MCI both before and after controlling covariates. By contrast, plasma BDNF concentration, but not irisin, was linearly correlated with cognitive performance after adjusting for covariates. Higher BDNF/irisin ratios were not only correlated with better cognitive performance, but also associated with lower risks of MCI, no matter whether we adjusted for covariates. Plasma BDNF and irisin concentrations increased with aging, whereas BDNF/irisin ratios remained stable. No significant results of clusterin were observed. Conclusions: Plasma BDNF/irisin ratio may be a reliable indicator which not only reflects the odds of the presence of MCI but also directly associates with cognitive performance.

7.
Insects ; 15(5)2024 May 15.
Article in English | MEDLINE | ID: mdl-38786915

ABSTRACT

Here, the taxonomy of the genus Rhagastis Rothschild & Jordan, 1903 (Lepidoptera, Sphingidae, Macroglossinae, Macroglossini) from China is revised based on differences in wing morphology, male and female genitalia, and the phylogenetic relationship of the DNA barcodes. Subspecies of Rhagastis albomarginatus (Rothschild, 1894) and R. castor (Walker, 1856) are treated as "good" species, namely Rhagastis dichroae Mell, 1922 stat. nov.; R. everetti Rothschild & Jordan, 1903 stat. nov.; R. aurifera (Butler, 1875) stat. rev.; R. chinensis Mell, 1922 stat. nov.; R. formosana Clark, 1925 stat. nov.; and R. jordani Oberthür, 1904 stat. rev. The distribution maps, biological notes, and ecological records of the genus Rhagastis Rothschild & Jordan, 1903 from China are given, and a species inventory of genus Rhagastis in the world is also included.

8.
Medicine (Baltimore) ; 103(21): e38354, 2024 May 24.
Article in English | MEDLINE | ID: mdl-38787971

ABSTRACT

BACKGROUND: The aim of this study is to examine the impact of the Orlistat on glucose levels and glucose tolerance in individuals with prediabetes, as well as assess its efficacy and safety in preventing the progression to diabetes. METHODS: For achieving the appropriate randomized controlled trials, we enrolled the public datas from the following electronic databases: The Cochrane library, Embase, China National Knowledge Infrastructure, VIP, Wan-Fang, and China Biology Medicine disc. The article focused on the orlistat intervention of glucose tolerance and glycemic status in prediabetic patients. We restricted the publication time from the creation to May 2023. RESULTS: Six subjects were included in the study, with a total of 1076 participants (532 in the control group vs 544 in the experimental group). The results indicated that the orlistat can reduce the fasting blood glucose [relative risk (RR) = -2.18, 95% confidence intervals (CI) (-2.471, -1.886)], as well as the 2 hour postprandial blood glucose [RR = -1.497, 95% CI (-1.811, -1.183)]. Furthermore, it can prevent the impaired glucose tolerance patients to type 2 diabetes mellitus [RR = 0.605, 95% CI (0.462, 0.791)], and reversal the impaired glucose tolerance [RR = 2.092, 95% CI (1.249, 3.503)]. CONCLUSIONS: In prediabetic people, the orlistat can control weight, reduce the fasting blood glucose and the 2 hour postprandial blood glucose, and then delay the progression of diabetes. However, due to the quantitative restrictions, additional high-quality study needs to be conducted to improve the reliability of the results.


Subject(s)
Anti-Obesity Agents , Blood Glucose , Diabetes Mellitus, Type 2 , Disease Progression , Orlistat , Prediabetic State , Humans , Orlistat/therapeutic use , Orlistat/pharmacology , Prediabetic State/drug therapy , Diabetes Mellitus, Type 2/drug therapy , Blood Glucose/drug effects , Anti-Obesity Agents/therapeutic use , Anti-Obesity Agents/adverse effects , Randomized Controlled Trials as Topic , Lactones/therapeutic use
9.
J Hazard Mater ; 472: 134521, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38718513

ABSTRACT

Norfloxacin (NOR) is widely used in medicine and animal husbandry, but its accumulation in the environment poses a substantial threat to ecological and human health. Traditional physical, chemical, and rudimentary biological methods often fall short in mitigating NOR contamination, necessitating innovative biological approaches. This study proposes an engineered bacterial consortium found in marine sediment as a strategy to enhance NOR degradation through inter-strain co-metabolism of diverse substrates. Strategically supplementing the engineered bacterial consortium with exogenous carbon sources and metal ions boosted the activity of key degradation enzymes like laccase, manganese peroxidase, and dehydrogenase. Iron and amino acids demonstrated synergistic effects, resulting in a remarkable 70.8% reduction in NOR levels. The innovative application of molecular docking elucidated enzyme interactions with NOR, uncovering potential biodegradation mechanisms. Quantitative assessment reinforced the efficiency of NOR degradation within the engineered bacterial consortium. Four metabolic routes are herein proposed: acetylation, defluorination, ring scission, and hydroxylation. Notably, this study discloses distinctive, co-operative metabolic pathways for NOR degradation within the specific microbial community. These findings provide new ways of understanding and investigating the bioremediation potential of NOR contaminants, which may lead to the development of more sustainable and effective environmental management strategies.


Subject(s)
Biodegradation, Environmental , Molecular Docking Simulation , Norfloxacin , Norfloxacin/metabolism , Anti-Bacterial Agents/metabolism , Anti-Bacterial Agents/chemistry , Metabolic Networks and Pathways , Bacteria/metabolism , Geologic Sediments/microbiology , Geologic Sediments/chemistry , Microbial Consortia , Water Pollutants, Chemical/metabolism , Water Pollutants, Chemical/chemistry
10.
Front Neurosci ; 18: 1396917, 2024.
Article in English | MEDLINE | ID: mdl-38721047

ABSTRACT

Background: Sleep plays a critical role in human physiological and psychological health, and electroencephalography (EEG), an effective sleep-monitoring method, is of great importance in revealing sleep characteristics and aiding the diagnosis of sleep disorders. Sleep spindles, which are a typical phenomenon in EEG, hold importance in sleep science. Methods: This paper proposes a novel convolutional neural network (CNN) model to classify sleep spindles. Transfer learning is employed to apply the model trained on the sleep spindles of healthy subjects to those of subjects with insomnia for classification. To analyze the effect of transfer learning, we discuss the classification results of both partially and fully transferred convolutional layers. Results: The classification accuracy for the healthy and insomnia subjects' spindles were 93.68% and 92.77%, respectively. During transfer learning, when transferring all convolutional layers, the classification accuracy for the insomnia subjects' spindles was 91.41% and transferring only the first four convolutional layers achieved a classification result of 92.80%. The experimental results demonstrate that the proposed CNN model can effectively classify sleep spindles. Furthermore, the features learned from the data of the normal subjects can be effectively applied to the data for subjects with insomnia, yielding desirable outcomes. Discussion: These outcomes underscore the efficacy of both the collected dataset and the proposed CNN model. The proposed model exhibits potential as a rapid and effective means to diagnose and treat sleep disorders, thereby improving the speed and quality of patient care.

11.
Chem Biodivers ; : e202400900, 2024 May 07.
Article in English | MEDLINE | ID: mdl-38713316

ABSTRACT

A new compound xylarkarynone A (1), a first reported natural product compound xylarkarynone B (2) and eight known compounds (3-10) were isolated from Xylaria sp. HHY-2. Their structures were elucidated by spectroscopic methods, DP4+ probability analyses and electronic circular dichroism (ECD) calculations. The bioactivities of isolated compounds were assayed. Compound 1 exhibited obvious activity against A549 cells with an IC50 value of 6.12 ± 0.28 µM. Additionally, compound 1 showed moderate antifungal activities against Plectosphaerella cucumerina and Aspergillus niger with minimum inhibitory concentrations (MICs) of both 16 µg/mL, which was at the same grade with positive control nystatin. Most compounds exhibited varying degrees of inhibitory activity against P. cucumerina, indicating that Xylaria sp. has potential as inhibitors against P. cucumerina.

12.
FASEB J ; 38(10): e23666, 2024 May 31.
Article in English | MEDLINE | ID: mdl-38780091

ABSTRACT

Genome-wide association studies have identified many single nucleotide polymorphisms (SNPs) associated with erythrocyte traits. However, the functional variants and their working mechanisms remain largely unknown. Here, we reported that the SNP of rs80207740, which was associated with red blood cell (RBC) volume and hemoglobin content across populations, conferred enhancer activity to XPO7 gene via allele-differentially binding to Ikaros family zinc finger 1 (IKZF1). We showed that the region around rs80207740 was an erythroid-specific enhancer using reporter assays, and that the G-allele further enhanced activity. 3D genome evidence showed that the enhancer interacted with the XPO7 promoter, and eQTL analysis suggested that the G-allele upregulated expression of XPO7. We further showed that the rs80207740-G allele facilitated the binding of transcription factor IKZF1 in EMSA and ChIP analyses. Knockdown of IKZF1 and GATA1 resulted in decreased expression of Xpo7 in both human and mouse erythroid cells. Finally, we constructed Xpo7 knockout mouse by CRISPR/Cas9 and observed anemic phenotype with reduced volume and hemoglobin content of RBC, consistent to the effect of rs80207740 on erythrocyte traits. Overall, our study demonstrated that rs80207740 modulated erythroid indices by regulating IKZF1 binding and Xpo7 expression.


Subject(s)
Alleles , Erythrocytes , Genome-Wide Association Study , Ikaros Transcription Factor , Polymorphism, Single Nucleotide , Ikaros Transcription Factor/genetics , Ikaros Transcription Factor/metabolism , Humans , Animals , Mice , Erythrocytes/metabolism , Karyopherins/genetics , Karyopherins/metabolism , Receptors, Cytoplasmic and Nuclear/genetics , Receptors, Cytoplasmic and Nuclear/metabolism , Promoter Regions, Genetic
13.
Bioact Mater ; 38: 384-398, 2024 Aug.
Article in English | MEDLINE | ID: mdl-38764448

ABSTRACT

Patient-derived tumor organoids (PDTOs) shows great potential as a preclinical model. However, the current methods for establishing PDTOs primarily focus on modulating local properties, such as sub-micrometer topographies. Nevertheless, they neglect to capture the global millimeter or intermediate mesoscale architecture that have been demonstrated to influence tumor response to therapeutic treatment and tumor progression. In this study, we present a rapid technique for generating collagen bundles with an average length of 90 ± 27 µm and a mean diameter of 5 ± 1.5 µm from tumor tissue debris that underwent mechanical agitation following enzymatic digestion. The collagen bundles were subsequently utilized for the fabrication of biomimetic hydrogels, incorporating microbial transglutaminase (mTG) crosslinked gelatin. These biomimetic hydrogels, referred to as MC-gel, were specifically designed for patient-derived tumor organoids. The lung cancer organoids cultured in MC-gel exhibited larger diameters and higher cell viability compared to those cultured in gels lacking the mesoscale collagen bundle; moreover, their irregular morphology more closely resembled that observed in vivo. The MC-gel-based lung cancer organoids effectively replicated the histology and mutational landscapes observed in the original donor patient's tumor tissue. Additionally, these lung cancer organoids showed a remarkable similarity in their gene expression and drug response across different matrices. This recently developed model holds great potential for investigating the occurrence, progression, metastasis, and management of tumors, thereby offering opportunities for personalized medicine and customized treatment options.

14.
Heliyon ; 10(9): e30651, 2024 May 15.
Article in English | MEDLINE | ID: mdl-38765063

ABSTRACT

Silicosis is a progressive pulmonary fibrosis disease caused by long-term inhalation of silica. The early diagnosis and timely implementation of intervention measures are crucial in preventing silicosis deterioration further. However, the lack of screening and diagnostic measures for early-stage silicosis remains a significant challenge. In this study, silicosis models of varying severity were established through a single exposure to silica with different doses (2.5mg/mice or 5mg/mice) and durations (4 weeks or 12 weeks). The diagnostic performance of computed tomography (CT) quantitative analysis was assessed using lung density biomarkers and the lung density distribution histogram, with a particular focus on non-aerated lung volume. Subsequently, we developed and evaluated a stacking learning model for early diagnosis of silicosis after extracting and selecting features from CT images. The CT quantitative analysis reveals that while the lung densitometric biomarkers and lung density distribution histogram, as traditional indicators, effectively differentiate severe fibrosis models, they are unable to distinguish early-stage silicosis. Furthermore, these findings remained consistent even when employing non-aerated areas, which is a more sensitive indicator. By establishing a radiomics stacking learning model based on non-aerated areas, we can achieve remarkable diagnostic performance to distinguish early-stage silicosis, which can provide a valuable tool for clinical assistant diagnosis. This study reveals the potential of using non-aerated lung areas as a region of interest in stacking learning for early diagnosis of silicosis, providing new insights into early detection of this disease.

15.
Mikrochim Acta ; 191(5): 239, 2024 04 04.
Article in English | MEDLINE | ID: mdl-38570399

ABSTRACT

To accurately detect tumor marker carbohydrate antigen 72-4 (CA72-4) of serum samples is of great significance for the early diagnosis of malignant tumors. In the present study, MnO2/hollow nanobox metal-organic framework (HNM)-AuPtPd nanocomposites were prepared via multi-step synthesis and superposition method and a series of characterizations were carried out. A highly sensitive immunosensor Ab/MnO2/HNM-AuPtPd/GCE based on the composite nanomaterial was further prepared and used to detect the tumor marker CA72-4. The constructed immunosensor achieved signal amplification by increasing the electrocatalytic activity to H2O2 by means of the synergistic effect of MnO2 ultra-thin nanosheets (MnO2 UNs) and HNM-AuPtPd. At the same time, the electrochemical properties of the immunosensor were analyzed using cyclic voltammetry, electrochemical impedance, amperometry (with the test voltage of -0.4 V), and differential pulse voltammetry. The experimental results showed that the MnO2/HNM-AuPtPd nanocomposites were successfully prepared, and the immunosensor Ab/MnO2/HNM-AuPtPd/GCE demonstrated an excellent electrochemical performance. The electrochemical immunosensor had the highest detection sensitivity under the optimal experimental conditions, such as incubation pH of 7.0, incubation time of 60 min, with the addition of 15 µL of H2O2, and in the concentration range 0.001-500 U/mL. It had a low detection limit of 1.78×10-5 U/mL (S/N = 3). Moreover, the serum sample recovery were in the range from 99.38 to 100.52%. This study provides a new method and experimental basis for the detection of tumor markers in clinical practice.


Subject(s)
Antigens, Tumor-Associated, Carbohydrate , Biosensing Techniques , Nanocomposites , Biomarkers, Tumor , Biosensing Techniques/methods , Hydrogen Peroxide/chemistry , Manganese Compounds/chemistry , Oxides/chemistry , Immunoassay , Nanocomposites/chemistry
16.
Sci Adv ; 10(14): eadl4600, 2024 Apr 05.
Article in English | MEDLINE | ID: mdl-38579006

ABSTRACT

Quantifying the structural variants (SVs) in nonhuman primates could provide a niche to clarify the genetic backgrounds underlying human-specific traits, but such resource is largely lacking. Here, we report an accurate SV map in a population of 562 rhesus macaques, verified by in-house benchmarks of eight macaque genomes with long-read sequencing and another one with genome assembly. This map indicates stronger selective constrains on inversions at regulatory regions, suggesting a strategy for prioritizing them with the most important functions. Accordingly, we identified 75 human-specific inversions and prioritized them. The top-ranked inversions have substantially shaped the human transcriptome, through their dual effects of reconfiguring the ancestral genomic architecture and introducing regional mutation hotspots at the inverted regions. As a proof of concept, we linked APCDD1, located on one of these inversions and down-regulated specifically in humans, to neuronal maturation and cognitive ability. We thus highlight inversions in shaping the human uniqueness in brain development.


Subject(s)
Genome , Genomics , Animals , Humans , Macaca mulatta , Brain
17.
Angew Chem Int Ed Engl ; : e202404734, 2024 Apr 18.
Article in English | MEDLINE | ID: mdl-38635373

ABSTRACT

The development of porous materials with flexible-robust characteristics shows some unique advantages to target high performance for gas separation, but remains a daunting challenge to achieve so far. Herein, we report a carboxyl-based hydrogen-bonded organic framework (ZJU-HOF-8a) with flexible-robust porosity for efficient purification of natural gas. ZJU-HOF-8a features a four-fold interpenetrated structure with dia topology, wherein abundant supramolecular entanglements are formed between the adjacent subnetworks through weak intermolecular hydrogen bonds. This structural configuration could not only stabilize the whole framework to establish the permanent porosity, but also enable the framework to show some flexibility due to its weak intermolecular interactions (so-called flexible-robust framework). The flexible-robust porosity of ZJU-HOF-8a was exclusively confirmed by gas sorption isotherms and single-crystal X-ray diffraction studies, showing that the flexible pore pockets can be opened by C3H8 and n-C4H10 molecules rather by C2H6 and CH4. This leads to notably higher C3H8 and n-C4H10 uptakes with enhanced selectivities than C2H6 over CH4 under ambient conditions, affording one of the highest n-C4H10/CH4 selectivities. The gas-loaded single-crystal structures coupled with theoretical simulations reveal that the loading of n-C4H10 can induce an obvious framework expansion along with pore pocket opening to improve n-C4H10 uptake and selectivity, while not for C2H6 adsorption. This work suggests an effective strategy of designing flexible-robust HOFs for improving gas separation properties.

18.
Small ; : e2401289, 2024 Apr 09.
Article in English | MEDLINE | ID: mdl-38593317

ABSTRACT

2D materials-based broadband photodetectors have extensive applications in security monitoring and remote sensing fields, especially in supersonic aircraft that require reliable performance under extreme high-temperature conditions. However, the integration of large-area heterostructures with 2D materials often involves high-temperature deposition methods, and also limited options and size of substrates. Herein, a liquid-phase spin-coating method is presented based on the interface engineering to prepare larger-area Van der Waals heterojunctions of black phosphorus (BP)/reduced graphene oxide (RGO) films at room temperature on arbitrary substrates of any required size. Importantly, this method avoids the common requirement of high-temperature, and prevents the curling or stacking in 2D materials during the liquid-phase film formation. The BP/RGO films-based devices exhibit a wide spectral photo-response, ranging from the visible of 532 nm to infrared range of 2200 nm. Additionally, due to Van der Waals interface of Schottky junction, the array devices provide infrared detection at temperatures up to 400 K, with an outstanding photoresponsivity (R) of 12 A W-1 and a specific detectivity (D*) of ≈2.4 × 109 Jones. This work offers an efficient approach to fabricate large-area 2D Schottky junction films by solution-coating for high-temperature infrared photodetectors.

19.
Front Oncol ; 14: 1374195, 2024.
Article in English | MEDLINE | ID: mdl-38577338

ABSTRACT

Objective: Accumulated evidence has suggested a relatively high recurrence rate in early-stage cervical cancer (CC) patients with risk factors. This study aimed to assess the efficacy and safety of consolidation chemotherapy following adjuvant therapy (concurrent chemoradiotherapy (CCRT) or radiotherapy (RT) alone) in stage IB-IIA CC patients with risk factors. Methods: A total of 237 stage IB-IIA CC patients who received radical surgery between January 2014 and December 2021 were included in the retrospective study. According to the types of adjuvant therapies, the patients were classified into the control group (CCRT or RT alone) and the study group (consolidation chemotherapy following CCRT or RT alone). The propensity score matching (PSM) was used to balance baseline characteristics between the two groups. The primary end points of the study were disease-free survival (DFS) and overall survival (OS). Results: For the entire cohort, no significant difference was observed in the DFS or OS between the study and control group, which was also confirmed in the PSM cohort (n=124). The multivariate analysis identified the high-risk factor type was an independent adverse prognostic factor for the patients. In patients with high risk factors, consolidation chemotherapy following adjuvant therapy was significantly associated with better clinical outcomes and identified as an independent prognostic favorable factor. Moreover, this association remained statistically significant in high-risk patients with ≥2 metastatic lymph nodes. In patients with intermediate risk factors, consolidation chemotherapy following adjuvant therapy was unrelated to DFS or OS. The safe assessment demonstrated consolidation chemotherapy following adjuvant therapy was significantly correlated with higher rates of ≥ grade 3 hematologic toxicities in both the global and subgroup analysis stratified by risk factor type. Conclusion: Consolidation chemotherapy after adjuvant therapy provided survival benefits in stage IB-IIA CC patients with high risk factors, particularly those with ≥2 metastatic lymph nodes. However, related hematologic toxicities should be alerted in patient management. The actual efficacy and safety of consolidation chemotherapy still need to be investigated in more well-designed clinical trials.

20.
ACS Nano ; 18(16): 10874-10884, 2024 Apr 23.
Article in English | MEDLINE | ID: mdl-38613774

ABSTRACT

Increasing modal variations of stimulus-responsive materials ensure the high capacity and confidentiality of information storage and encryption systems that are crucial to information security. Herein, thermochromic perovskite microcapsules (TPMs) with dual-variable and quadruple-modal reversible properties are designed and prepared on the original oil-in-fluorine (O/F) emulsion system. The TPMs respond to the orthogonal variations of external UV and thermal stimuli in four reversible switchable modes and exhibit excellent thermal, air, and water stability due to the protection of perovskites by the core-shell structure. Benefiting from the high-density information storage TPMs, multiple information encryptions and decryptions are demonstrated. Moreover, a set of devices are assembled for a multilevel information encryption system. By taking advantage of TPMs as a "private key" for decryption, the signal can be identified as the corresponding binary ASCII code and converted to the real message. The results demonstrate a breakthrough in high-density information storage materials as well as a multilevel information encryption system based on switchable quadruple-modal TPMs.

SELECTION OF CITATIONS
SEARCH DETAIL
...