Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 3 de 3
Filter
Add more filters











Database
Publication year range
1.
J Transl Med ; 22(1): 596, 2024 Jun 27.
Article in English | MEDLINE | ID: mdl-38926764

ABSTRACT

BACKGROUND: Existing studies have found that circular RNAs (circRNAs) act as sponges for micro RNAs (miRNAs) to control downstream genes. However, the specific functionalities and mechanisms of circRNAs in human clear cell renal cell carcinoma (ccRCC) have yet to be thoroughly investigated. METHODS: Patient cohorts from online databases were used to screen candidate circRNAs, while another cohort from our hospital was obtained for validation. CircSOD2 was identified as a potential oncogenic target, and its relevant characteristics were investigated during ccRCC progression through various assays. A positive feedback loop containing downstream miRNA and its target gene were identified using bioinformatics and validated by luciferase reporter assays, RNA pull-down, and high-throughput sequencing. RESULTS: CircSOD2 expression was elevated in tumor samples and significantly correlated with overall survival (OS) and the tumor stage of ccRCC patients, which appeared in the enhanced proliferation, invasion, and migration of tumor cells. Through competitive binding to circSOD2, miR-532-3p can promote the expression of PAX5 and the progression of ccRCC, and such regulation can be salvaged by miR-532-3p inhibitor. CONCLUSION: A novel positive feedback loop, PAX5/circSOD2/miR-532-3p/PAX5 was identified in the study, indicating that the loop may play an important role in the diagnosis and prognostic prediction in ccRCC patients.


Subject(s)
Carcinoma, Renal Cell , Cell Proliferation , Feedback, Physiological , Gene Expression Regulation, Neoplastic , Kidney Neoplasms , MicroRNAs , RNA, Circular , Humans , Carcinoma, Renal Cell/genetics , Carcinoma, Renal Cell/pathology , Carcinoma, Renal Cell/metabolism , RNA, Circular/genetics , RNA, Circular/metabolism , Kidney Neoplasms/genetics , Kidney Neoplasms/pathology , Kidney Neoplasms/metabolism , MicroRNAs/genetics , MicroRNAs/metabolism , Cell Line, Tumor , Cell Proliferation/genetics , Female , Middle Aged , Male , Carcinogenesis/genetics , Carcinogenesis/pathology , Cell Movement/genetics , PAX5 Transcription Factor/metabolism , PAX5 Transcription Factor/genetics , Oncogenes/genetics , Base Sequence , Disease Progression , Neoplasm Invasiveness , Reproducibility of Results
2.
Food Chem ; 141(1): 182-6, 2013 Nov 01.
Article in English | MEDLINE | ID: mdl-23768345

ABSTRACT

A novel and simple rapid shaking-based method of ionic liquid dispersive liquid phase microextraction for the determination of six synthetic food colourants (Tartrazine, Amaranth, Sunset Yellow, Allura Red, Ponceau 4R, and Erythrosine) in soft drinks, sugar- and gelatin-based confectionery was established. High-performance liquid chromatography coupled with an ultraviolet detector was used for the determinations. The extraction procedure did not require a dispersive solvent, heat, ultrasonication, or additional chemical reagents. 1-Octyl-3-methylimidazolium tetrafluoroborate ([C8MIM][BF4]) was dispersed in an aqueous sample solution as fine droplets by manual shaking, enabling the easier migration of analytes into the ionic liquid phase. Factors such as the [C8MIM][BF4] volume, sample pH, extraction time, and centrifugation time were investigated. Under the optimum experimental conditions, the proposed method showed excellent detection sensitivity with limits of detection (signal-to-noise ratio=3) within 0.015-0.32 ng/mL. The method was also successfully used in analysing real food samples. Good spiked recoveries from 95.8%-104.5% were obtained.


Subject(s)
Candy/analysis , Carbonated Beverages/analysis , Chromatography, High Pressure Liquid/methods , Food Coloring Agents/analysis , Food Coloring Agents/isolation & purification , Liquid Phase Microextraction/methods , Carbohydrates/analysis , Food Coloring Agents/chemical synthesis , Gelatin/analysis , Ionic Liquids/chemistry , Liquid Phase Microextraction/instrumentation
SELECTION OF CITATIONS
SEARCH DETAIL