Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 2 de 2
Filter
Add more filters










Database
Language
Publication year range
1.
Environ Sci Pollut Res Int ; 29(47): 72001-72016, 2022 Oct.
Article in English | MEDLINE | ID: mdl-35606589

ABSTRACT

The development of efficient, recyclable, and environment-friendly adsorbent for wastewater remediation is considered a challenge. In this study, a hierarchical porous kaolinite microsphere (HPKS) with three-dimensional (3D) structure was fabricated based on natural-layered kaolinite mineral via an environmentally friendly direct hydrothermal strategy. Characterization results revealed that HPKS microsphere with 3D hierarchical porous structure was constructed with numerous nanospheres which are assembled by ultrafine aluminosilicate flakes. HPKS exhibited negative charge feature ranging from strong acid to high alkaline solution. The influence of contact time, solution pH, initial dye concentration, adsorbent dosage, and foreign ions on methylene blue (MB) adsorption capability was systematically investigated. The synthesized HPKS with higher specific surface area (250.6 m2/g) shows an outstanding adsorption capacity towards MB (411.8 mg/g) and excellent selectivity for cationic MB dyes over anionic methyl orange and competitive metal ions. The adsorption kinetic experiment results fit very well with the pseudo-second-order model and reflect the fast adsorption rate of MB on HPKS. The sorption isotherm study reveals the chemisorption of electrostatic attraction between the cationic MB molecules and the negative charged surfaces of HPKS. More importantly, the MB removal efficiency is more than 99% in a broad range of solution pH value. The adsorption capacities of HPKS can be easily recovered by calcination at 600 °C to remove the adsorbed dyes and without obvious diminishment even after six successive cycles. Therefore, the HPKS is a cost-effective and environmentally friendly adsorbent which has is promising to use in practical applications.


Subject(s)
Coloring Agents , Kaolin , Adsorption , Cations , Coloring Agents/chemistry , Methylene Blue/chemistry , Microspheres , Porosity , Wastewater/chemistry
2.
Bioresour Technol ; 357: 127333, 2022 Aug.
Article in English | MEDLINE | ID: mdl-35598774

ABSTRACT

The aerobic oxidation of lignin model 2-phenoxyacetophenone (2-PAP) in cooperative ionic liquid mixtures (CoILs) with 1-ethyl-3-methylimidazolium acetate ([C2C1im]OAc) and 1-benzyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide ([BZC1im]NTf2) was investigated. Complete degradation of 2-PAP was achieved with [C2C1im]OAc/[BZC1im]NTf2 molar ratio (RIL) of 1/1 and 1/2 at 100 °C for 2 h. The conversion and product yields from CoILs were higher than those in pure ILs, indicating the cooperative effects of [C2C1im]OAc/[BZC1im]NTf2 on cleaving aryl-ether bonds. [C2C1im]OAc promoted the catalytic cleavage of aryl-ether bonds and solvation, and [BZC1im]NTf2 induced the formation of alkyl radicals and enhanced the product selectivity. Accordingly, the highest conversion of alkali lignin (79.8%) was obtained with RIL of 5/1 at 100 °C for 2 h, and phenol monomers (306 mg/g) were selectively produced. The CoILs exhibited good catalytic capacities for oxidative depolymerization of lignin, which strongly depends on the changes in intermolecular interactions and structural organization with varying RIL.


Subject(s)
Ionic Liquids , Ethers , Ionic Liquids/chemistry , Lignin/chemistry , Oxidation-Reduction , Oxidative Stress
SELECTION OF CITATIONS
SEARCH DETAIL
...