Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 111
Filter
1.
Int J Surg ; 2024 May 20.
Article in English | MEDLINE | ID: mdl-38768472

ABSTRACT

BACKGROUND: Associating liver partition with portal vein ligation for staged liver resection (ALPPS) has been used in the treatment of patients with advanced or massive liver cancer without sufficient future liver remnant, but concerns remain regarding tumor outcomes and surgical safety. This study aims to evaluate the efficacy and safety of a new procedure, Hepatic artery restriction operation combined with ALPPS (HARO-ALPPS), in the treatment of HCC patients especially with severe fibrosis. METHODS: This retrospective study analyzed 8 patients who underwent HARO-ALPPS for HCC and compared their outcomes with 64 patients who underwent conventional ALPPS. The primary outcomes assessed were liver regeneration ability (measured by relative and absolute kinetic growth rates), postoperative complications, and mortality. The secondary outcomes included overall survival and disease-free survival. RESULTS: HARO-ALPPS significantly restricted the blood supply of the hepatic artery. One week after surgery, the blood flow of the right hepatic artery dropped to 62.1%. At the same time, HARO-ALPPS shows superior liver regeneration ability, which is particularly prominent in the background of liver fibrosis. No serious complications occurred after HARO-ALPPS. The overall survival rate of HARO-ALPPS was 75%, which was higher than that of ALPPS (64%, P=0.816). CONCLUSION: Compared to conventional ALPPS, HARO-ALPPS exhibits a better liver regeneration ability, and favorable long-term outcomes. Further prospective studies are needed to validate these findings and evaluate the long-term oncologic outcomes of this novel procedure.

2.
Zool Res ; 45(4): 711-723, 2024 Jul 18.
Article in English | MEDLINE | ID: mdl-38766761

ABSTRACT

The genus Silurus, an important group of catfish, exhibits heterogeneous distribution in Eurasian freshwater systems. This group includes economically important and endangered species, thereby attracting considerable scientific interest. Despite this interest, the lack of a comprehensive phylogenetic framework impedes our understanding of the mechanisms underlying the extensive diversity found within this genus. Herein, we analyzed 89 newly sequenced and 20 previously published mitochondrial genomes (mitogenomes) from 13 morphological species to reconstruct the phylogenetic relationships, biogeographic history, and species diversity of Silurus. Our phylogenetic reconstructions identified eight clades, supported by both maximum-likelihood and Bayesian inference. Sequence-based species delimitation analyses yielded multiple molecular operational taxonomic units (MOTUs) in several taxa, including the Silurus asotus complex (four MOTUs) and Silurus microdorsalis (two MOTUs), suggesting that species diversity is underestimated in the genus. A reconstructed time-calibrated tree of Silurus species provided an age estimate of the most recent common ancestor of approximately 37.61 million years ago (Ma), with divergences among clades within the genus occurring between 11.56 Ma and 29.44 Ma, and divergences among MOTUs within species occurring between 3.71 Ma and 11.56 Ma. Biogeographic reconstructions suggested that the ancestral area for the genus likely encompassed China and the Korean Peninsula, with multiple inferred dispersal events to Europe and Central and Western Asia between 21.78 Ma and 26.67 Ma and to Japan between 2.51 Ma and 18.42 Ma. Key factors such as the Eocene-Oligocene extinction event, onset and intensification of the monsoon system, and glacial cycles associated with sea-level fluctuations have likely played significant roles in shaping the evolutionary history of the genus Silurus.


Subject(s)
Catfishes , Phylogeny , Phylogeography , Animals , Catfishes/genetics , Catfishes/classification , Genome, Mitochondrial , Genetic Variation , Animal Distribution
3.
J Am Chem Soc ; 2024 May 29.
Article in English | MEDLINE | ID: mdl-38812275

ABSTRACT

Zeolite nanosheets with an extremely thin thickness featuring both unique pore systems and low diffusion resistance have the potential to achieve enhanced catalytic performance in the conversion of bulky molecular biomass. The preparation of unit-cell level nanosheets generally requires complex and costly multifunctional surfactants or an organic structure-directing agent (OSDA). Commercially available and environmentally friendly ionic liquids can also direct the structure of zeolite nanosheets by π-π stacking when these kinds of OSDA are used in large amount. Herein, we first report unit-cell-sized silicogermanate nanosheets of NS-IM-20 (UWY topology), 5 nm in thickness, which were synthesized at a relatively low ionic liquid concentration with the assistance of halide ion (Cl-). The Pd-loaded NS-IM-20 nanosheets with a hierarchical porosity and moderate acidity act as promising bifunctional catalysts for selective biomass conversion.

4.
Adv Sci (Weinh) ; : e2404198, 2024 May 29.
Article in English | MEDLINE | ID: mdl-38810118

ABSTRACT

Rheumatoid arthritis (RA) is an autoimmune disorder characterized by chronic inflammation of the synovial joints and the dysfunction of regulatory T cells (Tregs) in the peripheral blood. Therefore, an optimal treatment strategy should aim to eliminate the inflammatory response in the joints and simultaneously restore the immune tolerance of Tregs in peripheral blood. Accordingly, we developed an efferocytosis-mimicking nanovesicle that contains three functional factors for immunomodulating of efferocytosis, including "find me" and "eat me" signals for professional (macrophage) or non-professional phagocytes (T lymphocyte), and "apoptotic metabolite" for metabolite digestion. We showed that efferocytosis-mimicking nanovesicles targeted the inflamed joints and spleen of mice with collagen-induced arthritis, further recruiting and selectively binding to macrophages and T lymphocytes to induce M2 macrophage polarization and Treg differentiation and T helper cell 17 (Th17) recession. Under systemic administration, the efferocytosis-mimicking nanovesicles effectively maintained the pro-inflammatory M1/anti-inflammatory M2 macrophage balance in joints and the Treg/Th17 imbalance in peripheral blood to prevent RA progression. This study demonstrates the potential of efferocytosis-mimicking nanovesicles for RA immunotherapy.

5.
PeerJ ; 12: e17351, 2024.
Article in English | MEDLINE | ID: mdl-38799062

ABSTRACT

To investigate the age structure, growth pattern, mortality and exploitation rates of Leuciscus chuanchicus in the upstream Ningxia section of the Yellow River, four sampling surveys were conducted between 2022 and 2023. A total of 472 individuals were measured for their total length (TL) and body weight (W). Age determination was performed using otoliths. The collected samples had a range of total lengths from 4.52 to 37.45 cm, body weights ranging from 0.68 to 552.43 g, and ages ranging from 1 to 7 years old. The relationship between total length and body weight was expressed as W = 0.0052 L3.19 for all samples, which indicates that the growth of L. chuanchicus adheres to allometry. The Von Bertalanffy growth equation revealed that the fish had an asymptotic total length (L∞) of approximately 37.9 cm with a growth coefficient (K) value of approximately 0.461 yr-1. Using the age-based catch curve method, the calculated total instantaneous mortality rate (Z) for all samples was determined as being equal to approximately 1.1302 yr-1. Additionally, three methods were used to estimate the average instantaneous rate of natural mortality (M), resulting in an approximate value of 0.7167 yr-1 for all samples. Furthermore, the instantaneous rate of fishing mortality (F) for all samples was calculated as 0.4134 yr-1, leading us to determine that the exploitation rate (E) is 0.3658. It was concluded that the growth rate of L. chuanchicus in the upstream of the Yellow River is relatively fast, and L. chuanchicus has not been subjected to excessive exploitation, yet its relatively high natural mortality rate underscores the need for targeted management measures aimed at preserving its habitat.


Subject(s)
Rivers , Animals , China/epidemiology , Cyprinidae/growth & development , Mortality/trends , Fisheries
6.
Comput Biol Med ; 176: 108543, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38744015

ABSTRACT

Proteins play a vital role in various biological processes and achieve their functions through protein-protein interactions (PPIs). Thus, accurate identification of PPI sites is essential. Traditional biological methods for identifying PPIs are costly, labor-intensive, and time-consuming. The development of computational prediction methods for PPI sites offers promising alternatives. Most known deep learning (DL) methods employ layer-wise multi-scale CNNs to extract features from protein sequences. But, these methods usually neglect the spatial positions and hierarchical information embedded within protein sequences, which are actually crucial for PPI site prediction. In this paper, we propose MR2CPPIS, a novel sequence-based DL model that utilizes the multi-scale Res2Net with coordinate attention mechanism to exploit multi-scale features and enhance PPI site prediction capability. We leverage the multi-scale Res2Net to expand the receptive field for each network layer, thus capturing multi-scale information of protein sequences at a granular level. To further explore the local contextual features of each target residue, we employ a coordinate attention block to characterize the precise spatial position information, enabling the network to effectively extract long-range dependencies. We evaluate our MR2CPPIS on three public benchmark datasets (Dset 72, Dset 186, and PDBset 164), achieving state-of-the-art performance. The source codes are available at https://github.com/YyinGong/MR2CPPIS.


Subject(s)
Deep Learning , Proteins/metabolism , Proteins/chemistry , Protein Interaction Mapping/methods , Computational Biology/methods , Humans , Databases, Protein
7.
Int J Biol Macromol ; 269(Pt 2): 132089, 2024 Jun.
Article in English | MEDLINE | ID: mdl-38705331

ABSTRACT

Pro-inflammatory M1 macrophages possess the ability to change the immunosuppressive tumor microenvironment by releasing various inflammatory factors simultaneously, which can effectively inhibit tumor progression and relapse. Promoting macrophage polarization towards M1 may be an effective way to treat Melanoma. However, the risk of cytokine storm caused by the proliferation and excessive activation of M1 macrophages greatly limits it as a biosafety therapeutic strategy in anti-tumor immunotherapy. Therefore, how to engineer natural M1 macrophage to a biocompatible biomaterial that maintains the duration time of tumor suppressive property duration time still remains a huge challenge. To achieve this goal, we developed an injectable macroporous hydrogel (M1LMHA) using natural M1 macrophage lysates and alginate as raw materials. M1LMHA had excellent biocompatibility, adjustable degradation rate and could sustainably release varieties of natural inflammatory factors, such as tumor necrosis factor-α (TNF-α), interferon-gamma (IFN-γ), and interleukin-12 (IL-12), etc. M1LMHA could repolarize anti-inflammatory M2 macrophages to M1 macrophages by the synergistic effect of released tiny inflammatory factors via the NF-κB pathway. This study supported that M1LMHA might be an effective and safe tool to activate tumor-associated immune cells, improving the efficiency of anti-tumor immunotherapy.


Subject(s)
Alginates , Hydrogels , Tumor-Associated Macrophages , Alginates/chemistry , Alginates/pharmacology , Mice , Animals , Hydrogels/chemistry , Hydrogels/pharmacology , Tumor-Associated Macrophages/drug effects , Tumor-Associated Macrophages/immunology , Tumor-Associated Macrophages/metabolism , Melanoma/therapy , Melanoma/immunology , Melanoma/drug therapy , Melanoma/pathology , Porosity , Macrophages/drug effects , Macrophages/immunology , Macrophages/metabolism , RAW 264.7 Cells , Cytokines/metabolism , Cell Line, Tumor , Tumor Microenvironment/drug effects
8.
J Nanobiotechnology ; 22(1): 201, 2024 Apr 24.
Article in English | MEDLINE | ID: mdl-38659058

ABSTRACT

The utilization of extracellular vesicles (EV) in immunotherapy, aiming at suppressing peripheral immune cells responsible for inflammation, has demonstrated significant efficacy in treating various inflammatory diseases. However, the clinical application of EV has faced challenges due to their inadequate targeting ability. In addition, most of the circulating EV would be cleared by the liver, resulting in a short biological half-life after systemic administration. Inspired by the natural microvesicles (MV, as a subset of large size EV) are originated and shed from the plasma membrane, we developed the immunosuppressive MV-mimetic (MVM) from endotoxin tolerant dendritic cells (DC) by a straightforward and effective extrusion approach, in which DC surface proteins were inherited for providing the homing ability to the spleen, while αCD3 antibodies were conjugated to the MVM membranes for specific targeting of T cells. The engineered MVM carried a large number of bioactive cargos from the parental cells, which exhibited a remarkable ability to promote the induction of regulatory T cells (Treg) and polarization of anti-inflammatory M2 macrophages. Mechanistically, the elevated Treg level by MVM was mediated due to the upregulation of miR-155-3p. Furthermore, it was observed that systemic and local immunosuppression was induced by MVM in models of sepsis and rheumatoid arthritis through the improvement of Treg and M2 macrophages. These findings reveal a promising cell-free strategy for managing inflammatory responses to infections or tissue injury, thereby maintaining immune homeostasis.


Subject(s)
Cell-Derived Microparticles , Dendritic Cells , Inflammation , Dendritic Cells/drug effects , Dendritic Cells/immunology , Dendritic Cells/metabolism , Animals , Mice , Inflammation/drug therapy , Cell-Derived Microparticles/metabolism , Mice, Inbred C57BL , T-Lymphocytes, Regulatory/immunology , T-Lymphocytes, Regulatory/drug effects , Extracellular Vesicles , Macrophages/drug effects , Macrophages/metabolism , Macrophages/immunology , Sepsis/immunology , Sepsis/drug therapy , Arthritis, Rheumatoid/drug therapy , Arthritis, Rheumatoid/immunology , T-Lymphocytes/immunology , T-Lymphocytes/drug effects , Humans , Immunotherapy/methods
9.
J Nanobiotechnology ; 22(1): 103, 2024 Mar 11.
Article in English | MEDLINE | ID: mdl-38468261

ABSTRACT

BACKGROUND: Rheumatoid arthritis (RA) is a prevalent inflammatory autoimmune disease characterised by persistent inflammation and joint damage with elevated levels of reactive oxygen species (ROS). Current treatment modalities for RA have significant limitations, including poor bioavailability, severe side effects, and inadequate targeting of inflamed joints. Herein, we synthesised cerium/manganese oxide nanoparticles (NPs) as efficient drug carriers with antioxidant and catalytic-like functions that can eliminate ROS to facilitate the polarization of macrophages phenotype from M1 to M2 and alleviate inflammation. Methotrexate (MTX), a first-line RA medication, was loaded into the NPs, which were further modified with bovine serum albumin (BSA) and integrated into dissolving hyaluronic acid-based microneedles (MNs) for transdermal delivery. RESULT: This innovative approach significantly enhanced drug delivery efficiency, reduced RA inflammation, and successfully modulated macrophage polarization toward an anti-inflammatory phenotype. CONCLUSION: This research not only presents a promising drug delivery strategy for RA but also contributes broadly to the field of immune disease treatment by offering an advanced approach for macrophage phenotypic reprogramming.


Subject(s)
Arthritis, Rheumatoid , Cerium , Manganese Compounds , Nanoparticles , Oxides , Humans , Manganese/pharmacology , Reactive Oxygen Species/pharmacology , Arthritis, Rheumatoid/drug therapy , Macrophages , Inflammation , Cerium/pharmacology
10.
BMC Ecol Evol ; 24(1): 30, 2024 Mar 06.
Article in English | MEDLINE | ID: mdl-38443849

ABSTRACT

BALKGROUND: Gobio huanghensis is a small economic fish endemic to the Yellow River at the junction of the Tibetan Plateau and the Huangtu Plateau in China. To understand the impact of environmental changes and human activities on the ecological structure of the G. huanghensis population, a comparative study was conducted on the age composition, growth characteristics, mortality rate, and exploitation rate of the G. huanghensis populations in the Gansu and Ningxia sections of the upper Yellow River. RESULTS: During the investigation, a total of 1147 individuals were collected, with 427 individuals collected from the Gansu section and 720 individuals from the Ningxia section. The results showed that G. huanghensis in the Gansu section exhibited a total length ranging from 5.00 to 22.80 cm, with an average of 12.68 ± 4.03 cm. In the Ningxia section, the total length of G. huanghensis ranged from 2.15 to 20.65 cm, with an average of 9.48 ± 3.56 cm. The age composition of G. huanghensis in the Gansu section ranged from 1 to 7 years, where female fish were observed between 1 and 7 years old, and male fish between 1 and 6 years old. In the Ningxia section, both female and male fish ranged from 1 to 5 years old. The relationships between total length and body weight were (Gansu section, R2 = 0.9738) and (Ningxia section, R2 = 0.9686), indicating that fish in the Gansu section exhibit positive allometric growth, while fish in the Ningxia section exhibit negative allometric growth. The von Bertalanffy growth equation revealed that G. huanghensis in the Gansu section exhibited an asymptotic total length L∞ of 27.426 cm with a growth coefficient K of 0.225 yr-1, while in the Ningxia section, the asymptotic total length L∞ was 26.945 cm with a growth coefficient K of 0.263 yr-1. The total mortality rate (Z) values of G. huanghensis were 0.7592 yr and 1.1529 yr in the Gansu section and Ningxia section, respectively. The average natural mortality rate (M), estimated by three different methods, in the Gansu section was 0.4432 yr, while it was 0.5366 yr in the Ningxia section. The exploitation rate (E) of G. huanghensis was 0.4163 in the Gansu section and 0.5345 in the Ningxia section, indicating that the population in the Ningxia section may have been overexploited. CONCLUSION: Prolonged fishing pressures and environmental changes may have led to variations in the ecological parameters of the G. huanghensis population between the Gansu and Ningxia sections.


Subject(s)
Cypriniformes , Rivers , Animals , Humans , Female , Male , Infant , Child, Preschool , Child , China/epidemiology , Body Weight , Hunting
11.
Ann Surg Oncol ; 31(5): 3086, 2024 May.
Article in English | MEDLINE | ID: mdl-38319517

ABSTRACT

BACKGROUND: Hepatectomy combined with hepatic artery reconstruction in the operation for hilar cholangiocarcinoma (Klatskin tumor) is a challenging procedure. We present a video of left hepatectomy combined with right hepatic artery reconstruction for hilar cholangiocarcinoma. PATIENT AND METHODS: The patient was a 60-year-old male who presented with obstructive jaundice. The imaging examination showed that the confluence of left and right hepatic ducts and the wall of common hepatic duct were thickened, the local lumen was narrowed, the intrahepatic bile duct was dilated, and the right hepatic artery was invaded by tumors nearly 2.3 centimeters. Left hepatectomy with total caudate lobectomy, resection with reconstruction of right hepatic artery, hilar lymphadenectomy, and Roux-en-Y hepaticojejunostomy were performed. RESULTS: The operation time was 345 min, and the amount of bleeding was about 400 ml. There was no blood transfusion. The pathology showed poorly differentiated adenocarcinoma, with negative margins of common bile duct and right hepatic duct, and negative results of all lymph nodes. The patient's recovery was uneventful and he was discharged on postoperative day 14. The patient was disease free at 12-month follow-up evaluation. CONCLUSIONS: Hepatic artery resection and reconstruction procedure is safe and feasible for hilar cholangiocarcinoma in a highly tertiary hepatobiliary center.


Subject(s)
Bile Duct Neoplasms , Cholangiocarcinoma , Klatskin Tumor , Male , Humans , Middle Aged , Klatskin Tumor/surgery , Klatskin Tumor/pathology , Hepatectomy/methods , Hepatic Artery/surgery , Hepatic Artery/pathology , Liver/surgery , Bile Duct Neoplasms/surgery , Bile Duct Neoplasms/pathology , Cholangiocarcinoma/surgery
12.
Photoacoustics ; 35: 100583, 2024 Feb.
Article in English | MEDLINE | ID: mdl-38312807

ABSTRACT

A high sensitivity and ultra-low concentration range photoacoustic spectroscopy (PAS) gas detection system, which was based on a novel trapezoid compound ellipsoid resonant photoacoustic cell (TCER-PAC) and partial least square (PLS), was proposed to detect acetylene (C2H2) gas. In the concentration range of 0.5 ppm ∼ 10.0 ppm, the limit of detection (LOD) values of TCER-PAC-based PAS system without data processing was 66.4 ppb, which was lower than that of the traditional trapezoid compound cylindrical resonant photoacoustic cell (TCCR-PAC). The experimental results indicated that the TCER-PAC had higher sensitivity than of TCCR-PAC. Within the concentration range of 12.5 ppb ∼ 125.0 ppb, the LOD and limit of quantification (LOQ) of TCER-PAC-based PAS system combined with PLS regression algorithm were 1.1 ppb and 3.7 ppb, respectively. The results showed that higher detection sensitivity and lower LOD were obtained by PAS system with TCER-PAC and PLS than that of TCCR-PAC-based PAS system.

13.
PeerJ ; 12: e16673, 2024.
Article in English | MEDLINE | ID: mdl-38213772

ABSTRACT

To investigate various population biological parameters of Xenocypris argentea in the lower reaches of the Tangwang River (China), a comprehensive study was conducted for the first time. A total of 1,003 samples were collected from April to November 2022. The collected samples revealed that female X. argentea had total lengths ranging from 12.4 cm to 25.7 cm (weighing 15.86 g to 159.55 g), and male X. argentea had total lengths ranging from 10.8 cm to 23.9 cm (weighing 9.27 g to 121.06 g). The age of the samples was determined using otolith analysis, indicating that the ages ranged from 1 to 5 years old in both females and males. The length-weight relationships were further analyzed, uncovering the allometric growth index (b) was 3.1296 for females, indicating a positive allometric growth pattern. Differently, males exhibited a b value of 3.0274, suggesting an isometric growth pattern. Furthermore, the von Bertalanffy growth formula provided insights into the growth characteristics of X. argentea, revealing an asymptotic total length (L∞) of 36.096 cm and a growth coefficient (K) of 0.121. The analysis of the gonadal somatic index (GSI) and ovarian development period indicated that the spawning period occurred from April to July, with peak spawning in June. The study also explored fecundity-related traits, finding that individual absolute fecundity (FA) ranged from 11,364 eggs to 56,377 eggs, while eviscerated body weight relative fecundity (FW) ranged from 209 eggs/g to 823 eggs/g. The exploitation rate (E) for X. argentea was calculated as 0.574, suggesting that the population of X. argentea has been overexploited. By revealing previously unknown data on the key life history traits of X. argentea, this study has provided valuable insights that are crucial for the development of conservation strategies and policies.


Subject(s)
Cypriniformes , Rivers , Animals , Female , Male , Reproduction , Fertility , Gonads
14.
Angew Chem Int Ed Engl ; 63(10): e202318298, 2024 Mar 04.
Article in English | MEDLINE | ID: mdl-38240576

ABSTRACT

A multidimensional extra-large pore zeolite with highly hydrothermal stability, denoted as -IRT-HS, has been developed successfully, starting from Ge-rich germanosilicate precursor hydrothermally directed by a small and commercially available piperidinium-type organic structure-directing agent (OSDA). -IRT-HS, with the supermicropores, is structurally analogues to 28-membered ring -IRT topology as confirmed by various spectroscopic techniques. And it is the high-silica (Si/Ge=58) zeolite with the largest pore size as well. Notably, using acid-washed as-made Ge-rich -IRT precursor as the silicon source is crucial to restore partially collapsed structure into a stable framework by OSDA-assisted recrystallization. The calcined -IRT-HS maintains a high crystallinity, even when stored in a humid environment for extended periods or directly exposed to water. Additionally, high silica Al-containing analogue is also readily synthesized, serving as an active solid-acid catalyst in 1,3,5-triisopropylbenzene cracking reaction, yielding an impressive initial conversion up to 76.1 % much higher than conventional large-pore Beta zeolite (30.4 %). This work will pave the way for the designed synthesis of targeted high-silica zeolites with stable and extra-large pore frameworks, mimicking the structures of existing Ge-rich counterparts.

15.
Small ; 20(16): e2304318, 2024 Apr.
Article in English | MEDLINE | ID: mdl-38018305

ABSTRACT

The long-term inflammatory microenvironment is one of the main obstacles to inhibit acute spinal cord injury (SCI) repair. The natural adipose tissue-derived extracellular matrix hydrogel shows effective anti-inflammatory regulation because of its unique protein components. However, the rapid degradation rate and removal of functional proteins during the decellularization process impair the lasting anti-inflammation function of the adipose tissue-derived hydrogel. To address this problem, adipose tissue lysate provides an effective way for SCI repair due to its abundance of anti-inflammatory and nerve regeneration-related proteins. Thereby, human adipose tissue lysate-based hydrogel (HATLH) with an appropriate degradation rate is developed, which aims to in situ long-term recruit and induce anti-inflammatory M2 macrophages through sustainedly released proteins. HATLH can recruit and polarize M2 macrophages while inhibiting pro-inflammatory M1 macrophages regardless of human or mouse-originated. The axonal growth of neuronal cells also can be effectively improved by HATLH and HATLH-induced M2 macrophages. In vivo experiments reveal that HATLH promotes endogenous M2 macrophages infiltration in large numbers (3.5 × 105/100 µL hydrogel) and maintains a long duration for over a month. In a mouse SCI model, HATLH significantly inhibits local inflammatory response, improves neuron and oligodendrocyte differentiation, enhances axonal growth and remyelination, as well as accelerates neurological function restoration.


Subject(s)
Hydrogels , Spinal Cord Injuries , Humans , Mice , Animals , Hydrogels/pharmacology , Spinal Cord Injuries/drug therapy , Neurons/metabolism , Macrophages/metabolism , Anti-Inflammatory Agents/therapeutic use
16.
Front Cell Infect Microbiol ; 13: 1286977, 2023.
Article in English | MEDLINE | ID: mdl-38076459

ABSTRACT

Introduction: Clonorchiasis remains a serious global public health problem, causing various hepatobiliary diseases. However, there is still a lack of overall understanding regarding the molecular events triggered by Clonorchis sinensis (C. sinensis) in the liver. Methods: BALB/c mouse models infected with C. sinensis for 5, 10, 15, and 20 weeks were constructed. Liver pathology staining and observation were conducted to evaluate histopathology. The levels of biochemical enzymes, blood routine indices, and cytokines in the blood were determined. Furthermore, alterations in the transcriptome, proteome, and metabolome of mouse livers infected for 5 weeks were analyzed using multi-omics techniques. Results: The results of this study indicated that adult C. sinensis can cause hepatosplenomegaly and liver damage, with the most severe symptoms observed at 5 weeks post-infection. However, as the infection persisted, the Th2 immune response increased and symptoms were relieved. Multi-omics analysis of liver infected for 5 weeks identified 191, 402 and 232 differentially expressed genes (DEGs), proteins (DEPs) and metabolites (DEMs), respectively. Both DEGs and DEPs were significantly enriched in liver fibrosis-related pathways such as ECM-receptor interaction and cell adhesion molecules. Key molecules associated with liver fibrosis and inflammation (Cd34, Epcam, S100a6, Fhl2, Itgax, and Retnlg) were up-regulated at both the gene and protein levels. The top three metabolic pathways, namely purine metabolism, arachidonic acid metabolism, and ABC transporters, were associated with liver cirrhosis, fibrosis, and cholestasis, respectively. Furthermore, metabolites that can promote liver inflammation and fibrosis, such as LysoPC(P-16:0/0:0), 20-COOH-leukotriene E4, and 14,15-DiHETrE, were significantly up-regulated. Conclusion: Our study revealed that the most severe symptoms in mice infected with C. sinensis occurred at 5 weeks post-infection. Moreover, multi-omics analysis uncovered predominant molecular events related to fibrosis changes in the liver. This study not only enhances our understanding of clonorchiasis progression but also provides valuable insights into the molecular-level interaction mechanism between C. sinensis and its host liver.


Subject(s)
Clonorchiasis , Clonorchis sinensis , Animals , Mice , Clonorchis sinensis/genetics , Clonorchiasis/pathology , Multiomics , Liver/pathology , Liver Cirrhosis/pathology , Fibrosis , Mice, Inbred BALB C
17.
J Nanobiotechnology ; 21(1): 486, 2023 Dec 18.
Article in English | MEDLINE | ID: mdl-38105181

ABSTRACT

Osteoarthritis (OA) is a common degenerative joint disease characterized by progressive cartilage degradation and inflammation. In recent years, mesenchymal stem cells (MSCs) derived exosomes (MSCs-Exo) have attracted widespread attention for their potential role in modulating OA pathology. However, the unpredictable therapeutic effects of exosomes have been a significant barrier to their extensive clinical application. In this study, we investigated whether fucoidan-pretreated MSC-derived exosomes (F-MSCs-Exo) could better protect chondrocytes in osteoarthritic joints and elucidate its underlying mechanisms. In order to evaluate the role of F-MSCs-Exo in osteoarthritis, both in vitro and in vivo studies were conducted. MiRNA sequencing was employed to analyze MSCs-Exo and F-MSCs-Exo, enabling the identification of differentially expressed genes and the exploration of the underlying mechanisms behind the protective effects of F-MSCs-Exo in osteoarthritis. Compared to MSCs-Exo, F-MSCs-Exo demonstrated superior effectiveness in inhibiting inflammatory responses and extracellular matrix degradation in rat chondrocytes. Moreover, F-MSCs-Exo exhibited enhanced activation of autophagy in chondrocytes. MiRNA sequencing of both MSCs-Exo and F-MSCs-Exo revealed that miR-146b-5p emerged as a promising candidate mediator for the chondroprotective function of F-MSCs-Exo, with TRAF6 identified as its downstream target. In conclusion, our research results demonstrate that miR-146b-5p encapsulated in F-MSCs-Exo effectively inhibits TRAF6 activation, thereby suppressing inflammatory responses and extracellular matrix degradation, while promoting chondrocyte autophagy for the protection of osteoarthritic cartilage cells. Consequently, the development of a therapeutic approach combining fucoidan with MSC-derived exosomes provides a promising strategy for the clinical treatment of osteoarthritis.


Subject(s)
Chondrocytes , Exosomes , Mesenchymal Stem Cells , MicroRNAs , Osteoarthritis , Animals , Rats , Chondrocytes/metabolism , Exosomes/metabolism , MicroRNAs/metabolism , Osteoarthritis/metabolism , TNF Receptor-Associated Factor 6/metabolism , TNF Receptor-Associated Factor 6/pharmacology
18.
Nat Commun ; 14(1): 7516, 2023 11 18.
Article in English | MEDLINE | ID: mdl-37980355

ABSTRACT

Uncoupling of biological nitrogen fixation from ammonia assimilation is a prerequisite step for engineering ammonia excretion and improvement of plant-associative nitrogen fixation. In this study, we have identified an amino acid substitution in glutamine synthetase, which provides temperature sensitive biosynthesis of glutamine, the intracellular metabolic signal of the nitrogen status. As a consequence, negative feedback regulation of genes and enzymes subject to nitrogen regulation, including nitrogenase is thermally controlled, enabling ammonia excretion in engineered Escherichia coli and the plant-associated diazotroph Klebsiella oxytoca at 23 °C, but not at 30 °C. We demonstrate that this temperature profile can be exploited to provide diurnal oscillation of ammonia excretion when variant bacteria are used to inoculate cereal crops. We provide evidence that diurnal temperature variation improves nitrogen donation to the plant because the inoculant bacteria have the ability to recover and proliferate at higher temperatures during the daytime.


Subject(s)
Ammonia , Edible Grain , Edible Grain/metabolism , Ammonia/metabolism , Nitrogen/metabolism , Nitrogen Fixation , Nitrogenase/genetics , Nitrogenase/metabolism , Bacteria/metabolism
19.
Dalton Trans ; 52(44): 16217-16223, 2023 Nov 14.
Article in English | MEDLINE | ID: mdl-37850569

ABSTRACT

NH3 is an essential ingredient of chemical, fertilizer, and energy storage products. Industrial nitrogen fixation consumes an enormous amount of energy, which is counter to the concept of carbon neutrality, hence eNRR ought to be implemented as a clean alternative. Herein, we propose a double-single-atom MoCu-embedded porous carbon material derived from uio-66 (MoCu@C) by plasma-enhanced chemical vapor deposition (PECVD) to boost eNRR capabilities, with an NH3 yield rate of 52.4 µg h-1 gcat.-1 and a faradaic efficiency (FE) of 27.4%. Advanced XANES shows that the Mo active site receives electrons from Cu, modifies the electronic structure of the Mo active site and enhances N2 adsorption activation. The invention of rational MoCu double-single-atom materials and the utilization of effective eNRR approaches furnish the necessary building blocks for the fundamental study and practical application of Mo-based materials.

20.
IEEE Trans Pattern Anal Mach Intell ; 45(12): 14920-14937, 2023 12.
Article in English | MEDLINE | ID: mdl-37672380

ABSTRACT

Gait depicts individuals' unique and distinguishing walking patterns and has become one of the most promising biometric features for human identification. As a fine-grained recognition task, gait recognition is easily affected by many factors and usually requires a large amount of completely annotated data that is costly and insatiable. This paper proposes a large-scale self-supervised benchmark for gait recognition with contrastive learning, aiming to learn the general gait representation from massive unlabelled walking videos for practical applications via offering informative walking priors and diverse real-world variations. Specifically, we collect a large-scale unlabelled gait dataset GaitLU-1M consisting of 1.02M walking sequences and propose a conceptually simple yet empirically powerful baseline model GaitSSB. Experimentally, we evaluate the pre-trained model on four widely-used gait benchmarks, CASIA-B, OU-MVLP, GREW and Gait3D with or without transfer learning. The unsupervised results are comparable to or even better than the early model-based and GEI-based methods. After transfer learning, GaitSSB outperforms existing methods by a large margin in most cases, and also showcases the superior generalization capacity. Further experiments indicate that the pre-training can save about 50% and 80% annotation costs of GREW and Gait3D. Theoretically, we discuss the critical issues for gait-specific contrastive framework and present some insights for further study. As far as we know, GaitLU-1M is the first large-scale unlabelled gait dataset, and GaitSSB is the first method that achieves remarkable unsupervised results on the aforementioned benchmarks.


Subject(s)
Algorithms , Benchmarking , Humans , Gait , Walking , Videotape Recording
SELECTION OF CITATIONS
SEARCH DETAIL
...