Your browser doesn't support javascript.
loading
Show: 20 | 50 | 100
Results 1 - 20 de 21.936
Filter
1.
Neural Regen Res ; 20(3): 821-835, 2025 Mar 01.
Article in English | MEDLINE | ID: mdl-38886955

ABSTRACT

JOURNAL/nrgr/04.03/01300535-202503000-00027/figure1/v/2024-06-17T092413Z/r/image-tiff Repetitive traumatic brain injury impacts adult neurogenesis in the hippocampal dentate gyrus, leading to long-term cognitive impairment. However, the mechanism underlying this neurogenesis impairment remains unknown. In this study, we established a male mouse model of repetitive traumatic brain injury and performed long-term evaluation of neurogenesis of the hippocampal dentate gyrus after repetitive traumatic brain injury. Our results showed that repetitive traumatic brain injury inhibited neural stem cell proliferation and development, delayed neuronal maturation, and reduced the complexity of neuronal dendrites and spines. Mice with repetitive traumatic brain injuryalso showed deficits in spatial memory retrieval. Moreover, following repetitive traumatic brain injury, neuroinflammation was enhanced in the neurogenesis microenvironment where C1q levels were increased, C1q binding protein levels were decreased, and canonical Wnt/ß-catenin signaling was downregulated. An inhibitor of C1 reversed the long-term impairment of neurogenesis induced by repetitive traumatic brain injury and improved neurological function. These findings suggest that repetitive traumatic brain injury-induced C1-related inflammation impairs long-term neurogenesis in the dentate gyrus and contributes to spatial memory retrieval dysfunction.

2.
Small ; : e2404104, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38953403

ABSTRACT

Polyimide aerogels have been extensively used in thermal protection domain because they possess a combination of intrinsic characteristics of aerogels and unique features of polyimide. However, polyimide aerogels still suffer significant thermally induced shrinkage at temperatures above 200 °C, restricting their application at high temperature. Here, a novel "double-phase-networking" strategy is proposed for fabricating a lightweight and mechanically robust polyimide hybrid aerogel by forming silica-zirconia-phase networking skeletons, which possess exceptional dimensional stability in high-temperature environments and superior thermal insulation. The rational mechanism responsible for the formation of double-phase-networking aerogel is further explained, generally attributing to chemical crosslinking reactions and supramolecular hydrogen bond interactions derived from the main chains of polyimide and silane/zirconia precursor/sol. The as-prepared aerogels exhibit excellent high-temperature (270 °C) dimensional stability (5.09% ± 0.16%), anti-thermal-shock properties, and low thermal conductivity. Moreover, the hydrophobic treatment provides aerogels high water resistance with water contact angle of 136.9°, further suggestive of low moisture content of 3.6% after exposure to 70 °C and 85% relative humidity for 64 h. The proposed solution for significantly enhancing high-temperature dimensional stability and thermal insulation provides a great supporting foundation for fabricating high-performance organic aerogels as thermal protection materials in aerospace.

3.
Plant Physiol Biochem ; 214: 108880, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38954943

ABSTRACT

As the third active gas signal molecule in plants, hydrogen sulfide (H2S) plays important roles in physiological metabolisms and biological process of fruits and vegetables during postharvest storage. In the present study, the effects of H2S on enhancing resistance against soft rot caused by Botryosphaeria dothidea and the involvement of jasmonic acid (JA) signaling pathway in kiwifruit during the storage were investigated. The results showed that 20 µL L-1 H2S fumigation restrained the disease incidence of B. dothidea-inoculated kiwifruit during storage, and delayed the decrease of firmness and the increase of soluble solids (SSC) content. H2S treatment increased the transcription levels of genes related to JA biosynthesis (AcLOX3, AcAOS, AcAOC2, and AcOPR) and signaling pathway (AcCOI1, AcJAZ5, AcMYC2, and AcERF1), as well as the JA accumulation. Meanwhile, H2S promoted the expression of defense-related genes (AcPPO, AcSOD, AcGLU, AcCHI, AcAPX, and AcCAT). Correlation analysis revealed that JA content was positively correlated with the expression levels of JA biosynthesis and defense-related genes. Overall, the results indicated that H2S could promote the increase of endogenous JA content and expression of defense-related genes by regulating the transcription levels of JA pathway-related genes, which contributed to the inhibition on the soft rot occurrence of kiwifruit.

4.
J Chromatogr A ; 1730: 465130, 2024 Jun 29.
Article in English | MEDLINE | ID: mdl-38955130

ABSTRACT

This study describes the preparation of a cylindrical polymer foam column termed Chitosan/ß-Cyclodextrin/MIL-68(Al) (CS/ß-CD/MIL-68(Al)). An ice template-freeze drying technique was employed to prepare the CS/ß-CD/MIL-68(Al) foam column by embedding MIL-68(Al) in a polymer matrix comprising cross-linked chitosan (CS) and ß-cyclodextrin (ß-CD). The cylindrical CS/ß-CD/MIL-68(Al) foam was subsequently inserted into a syringe to develop a solid phase extraction (SPE) device. Without the requirement for an external force, the sample solution passed easily through the SPE column thanks to the porous structure of the CS/ß-CD/MIL-68(Al) foam column. Moreover, the CS/ß-CD/MIL-68(Al) foam column was thought to be a superior absorbent for SPE since it included the adsorptive benefits of CS, ß-CD, and MIL-68(Al). The SPE was utilized in conjunction with high-performance liquid chromatography to analyze six sulfonamides found in milk, urine, and water. With matrix effects ranging from 80.49 % to 104.9 % with RSD values of 0.4-14.0 %, the method showed high recoveries ranging from 80.6 to 107.4 % for water samples, 93.4-105.2 % for urine, and 87.4-100.9 % for milk. It also demonstrated good linearity in the range of 10-258 ng·mL-1 with the limits of detection ranging from 1.88 to 2.58 ng·mL-1. The cylindrical CS/ß-CD/MIL-68(Al) foam column prepared in this work offered several advantages, including its simple fabrication, excellent water stability, absence of pollutants, biodegradability, and reusability. It is particularly well-suited for SPE. Furthermore, the developed SPE method, employing CS/ß-CD/MIL-68(Al) foam column, is straightforward and precise, and its benefits, including affordability, ease of preparation, lack of specialized equipment, and solvent economy, underline its broad applicability for the pretreatment of aqueous samples.

5.
Reprod Sci ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38955937

ABSTRACT

Recurrent implantation failure (RIF) is a complex and poorly understood clinical disorder characterized by failure to conceive after repeated embryo transfers. Endometrial receptivity (ER) is a prerequisite for implantation, and ER disorders are associated with RIF. However, little is known regarding the molecular mechanisms underlying ER in RIF. In the present study, RNA sequencing data from the mid-secretory endometrium of patients with and without RIF were analyzed to explore the potential long non-coding RNAs (lncRNAs) and messenger RNAs (mRNAs) involved in RIF. The analysis revealed 213 and 1485 differentially expressed mRNAs and lncRNAs, respectively (fold change ≥ 2 and p < 0.05). Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses indicated that these genes were mostly involved in processes related to immunity or inflammation. 5 key genes (TTR, ALB, TF, AFP, and CFTR) and a key module including 14 hub genes (AFP, ALB, APOA1, APOA2, APOB, APOH, FABP1, FGA, FGG, GC, ITIH2, SERPIND1, TF and TTR) were identified in the protein-protein interaction (PPI) network. The 5 key genes were used to further explore the lncRNA-miRNA-mRNA regulatory network. Finally, the drug ML-193 based on the 14 hub genes was identifed through the CMap. After ML-193 treatment, endometrial cell proliferation was increased, the hub genes were mostly down-regulated, and the ER marker HOXA10 was up-regulated. These results offer insights into the regulatory mechanisms of lncRNAs and mRNAs and suggest ML-193 as a therapeutic agent for RIF by enhancing ER.

6.
Article in English | MEDLINE | ID: mdl-38956908

ABSTRACT

BACKGROUND: Evodiamine (EVO) is an alkaloid extracted from the dried and nearly ripe fruits of Euodia rutaecarpa and used as an anti-cancer, anti-inflammatory and anti-obesity agent. However, robust evidence of preclinical experiments has been lacking so far. Therefore, the purpose of this article was to investigate the effect of EVO in combination with other treatments on tumors in animal experiments. METHODS: A systematic review and meta-analysis were conducted to assess the anti-tumor effect of evodiamine-combined therapy. The search engine and electronic databases included PubMed, Scopus, China Knowledge Resource Integrated Database (CNKI), and SinoMed. The research method was based on the PRISMA checklist. RESULTS: A total of 7 studies and 108 animals were included. As a result, EVO combined therapy was found to be more effective than EVO monotherapy. The SMD was -25.64(95% CI: -5.77 -3.13) in tumor growth. In tumor weight, the SMD was -8.91(95% CI: -16.37, -1.44). CONCLUSION: EVO has the potential to alleviate the toxicity of chemotherapeutic agents, which increases the translatability to the clinical situation.

7.
Plant Dis ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956958

ABSTRACT

Fusarium rot on melon fruit has become an important postharvest disease for producers worldwide, typically involving multiple Fusarium pathogens (Khuna et al. 2022; Medeiros Araújo et al. 2021). In 2022, Fusarium fruit rot of muskmelon (Cucumis melo var. conomon) occurred sporadically in a field at Huainan Academy of Agricultural Sciences (32.658193º N, 117.064922º E) with an incidence of about 10%. Among these diseased muskmelons, a fruit exhibiting a white to yellowish colony athe intersection of the diseased and healthy tissues was collected and labeled TGGF22-17. The streak plate method was employed to isolate fungal spores on Bengal Red PDA (potato dextrose agar), which were then incubated at 25℃ in darkness. Following isolation and purification, a single-spore strain, TGGF22-17, was obtained and analyzed using morphological characters on PDA, synthetic nutrient agar (SNA) and carnation leaf agar (CLA) (Leslie and Summerell 2006), along with molecular identification. Colours were rated according to the color charts of Kornerup and Wanscher (1978). Based on the colony morphology on PDA, the isolate displayed a rosy buff or buff color with a white to buff margin. The colony margin was undulate, with the reverse transitioning from amber-yellow to honey-yellow. Aerial macroconidia on SNA were thin-walled, hyaline, mostly 3-5 septate, falcate, and measured 18.5-46.4 (x̄=34.2) × 2.9-4.8 (x̄ =3.9) µm in size (n =50). Sporodochial macroconidia on CLA were mostly five-septate with long apical and basal cells, exhibiting dorsiventral curvature. They were hyaline, with the apical cell hooked to tapering and the basal cell foot-shaped, measuring 46.5-89.6 (x̄ =72.3) × 3.5-5.0 (x̄ =4.3) µm in size (n = 100). Portions of three loci (TEF-1α, RPB1 and RPB2) were amplified and sequenced as described by Wang et al. (2019). Sequences were deposited in GenBank with accession number PP196583 to PP196585. The three gene sequences (TEF-1α, RPB1 and RPB2) of strain TGGF2022-17 shared 99.5% (629/632bp), 97.9% (1508/1540 bp) and 99.9% (1608/1609 bp) identity to the ex-type strain F. ipomoeae LC12165 respectively by pairwise DNA alignments on the FUSARIOID-ID database (https://www.fusarium.org). Phylogenetic analysis of the partial TEF-1α and RPB2 sequences with PhyloSuite (Zhang et al. 2020) showed the isolated fungus clustered with F. ipomoeae. Based on the morphological and phylogenetic analyses, TGGF22-17 was identified as F. ipomoeae. Pathogenicity tests were performed on healthy melons, which were surface-sterilized with 75% alcohol and wounded using a sterilized inoculation needle. A 4-mm diameter plug from a 7-day-old SNA culture of TGGF22-17 was aseptically inserted in the middle of the wound, sealed with plastic bag after absorbent cotton was included to maintain moisture. Five melons were each inoculated at three points. Noncolonized PDA agar plugs served as the negative control. The inoculated and uninoculated plugs were removed approximately 48 hours after inoculation. The melon inoculated with TGGF22-17 exhibited water-soaked black lesions 48h post-inoculation, resulting in a 100% infection rate (15/15). After 7 days, mycelium was obseved on the inoculated melons. No disease symptoms were observed on the uninoculated melons. To fulfill Koch's postulates, fungi were isolated from the inoculated fruit and confirmed as F. ipomoeae by morphological observation. Fusarium ipomoeae has been reported to cause fruit rot on winter squash (Cucurbita maxima) in Japan (Kitabayashi et al. 2023). To our knowledge, this is the first report of fruit rot on muskmelon caused by F. ipomoeae in China and this report will be valuable for monitoring and management of fruit rot disease on muskmelons.

8.
Article in English | MEDLINE | ID: mdl-38957995

ABSTRACT

Background: The objective of this study was to investigate the association between pre-operative body mass index (BMI) and surgical infection in perihilar cholangiocarcinoma (pCCA) patients treated with curative resection. Methods: Consecutive pCCA patients were enrolled from four tertiary hospitals between 2008 and 2022. According to pre-operative BMI, the patients were divided into three groups: low BMI (≤18.4 kg/m2), normal BMI (18.5-24.9 kg/m2), and high BMI (≥25.0 kg/m2). The incidence of surgical infection among the three groups was compared. Multivariable logistic regression models were used to determine the independent risk factors associated with surgical infection. Results: A total of 371 patients were enrolled, including 283 patients (76.3%) in the normal BMI group, 30 patients (8.1%) in the low BMI group, and 58 patients (15.6%) in the high BMI group. The incidence of surgical infection was significantly higher in the patients in the low BMI and high BMI groups than in the normal BMI group. The multivariable logistic regression model showed that low BMI and high BMI were independently associated with the occurrence of surgical infection. Conclusions: The pCCA patients with a normal BMI treated with curative resection could have a lower risk of surgical infection than pCCA patients with an abnormal BMI.

9.
Nanotechnology ; 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38958023

ABSTRACT

This study employs cold-wall chemical vapor deposition to achieve the growth of MoTe2thin films on 4-inch sapphire substrates. A two-step growth process is utilized, incorporating MoO3and Te powder sources under low-pressure conditions to synthesize MoTe2. The resultant MoTe2thin films exhibit a dominant 1T' phase, as evidenced by a prominent Raman peak at 161 cm-1. This preferential 1T' phase formation is attributed to controlled manipulation of the second-step growth temperature, essentially the reaction stage between Te vapor and the pre-deposited MoOx layer. Under these optimized growth conditions, the thickness of the continuous 1T'-MoTe2films can be precisely tailored within the range of 3.5 - 5.7 nm (equivalent to 5 - 8 layers), as determined by atomic force microscopy depth profiling. Hall-effect measurements unveil a typical hole concentration and mobility of 0.2 cm2/V-s and 7.9 × 1021cm-3, respectively, for the synthesized few-layered 1T'-MoTe2 films. Furthermore, Ti/Al bilayer metal contacts deposited on the few-layered 1T'-MoTe2films exhibit low specific contact resistances of approximately 1.0 × 10-4Ω-cm2estimated by the transfer length model. This finding suggests a viable approach for achieving low ohmic contact resistance using the 1T'-MoTe2intermediate layer between metallic electrodes and two-dimensional semiconductors.

10.
Ital J Pediatr ; 50(1): 124, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38956688

ABSTRACT

BACKGROUND: Addison's disease and X-linked adrenoleukodystrophy (X-ALD) (Addison's-only) are two diseases that need to be identified. Addison's disease is easy to diagnose clinically when only skin and mucosal pigmentation symptoms are present. However, X-ALD (Addison's-only) caused by ABCD1 gene variation is ignored, thus losing the opportunity for early treatment. This study described two patients with initial clinical diagnosis of Addison's disease. However, they rapidly developed neurological symptoms triggered by infection. After further genetic testing, the two patients were diagnosed with X-ALD. METHODS: We retrospectively analyzed X-ALD patients admitted to our hospital. Clinical features, laboratory test results, and imaging data were collected. Whole-exome sequencing was used in molecular genetics. RESULTS: Two patients were included in this study. Both of them had significantly increased adrenocorticotropic hormone level and skin and mucosal pigmentation. They were initially clinically diagnosed with Addison's disease and received hydrocortisone treatment. However, both patients developed progressive neurological symptoms following infectious disease. Further brain magnetic resonance imaging was completed, and the results suggested demyelinating lesions. Molecular genetics suggested variations in the ABCD1 gene, which were c.109_110insGCCA (p.C39Pfs*156), c.1394-2 A > C (NM_000033), respectively. Therefore, the two patients were finally diagnosed with X-ALD, whose classification had progressed from X-ALD (Addison's-only) to childhood cerebral adrenoleukodystrophy (CCALD). Moreover, the infection exacerbates the demyelinating lesions and accelerates the onset of neurological symptoms. Neither the two variation sites in this study had been previously reported, which extends the ABCD1 variation spectrum. CONCLUSIONS: Patients with only symptoms of adrenal insufficiency cannot be simply clinically diagnosed with Addison's disease. Being alert to the possibility of ABCD1 variation is necessary, and complete genetic testing is needed as soon as possible to identify X-ALD (Addison's-only) early to achieve regular monitoring of the disease and receive treatment early. In addition, infection, as a hit factor, may aggravate demyelinating lesions of CCALD. Thus, patients should be protected from external environmental factors to delay the progression of cerebral adrenoleukodystrophy.


Subject(s)
ATP Binding Cassette Transporter, Subfamily D, Member 1 , Adrenoleukodystrophy , Humans , Adrenoleukodystrophy/diagnosis , Adrenoleukodystrophy/genetics , Male , Retrospective Studies , ATP Binding Cassette Transporter, Subfamily D, Member 1/genetics , Child , Diagnostic Errors , Magnetic Resonance Imaging , Addison Disease/diagnosis , Addison Disease/genetics
12.
Front Pharmacol ; 15: 1421130, 2024.
Article in English | MEDLINE | ID: mdl-38962315

ABSTRACT

Background: Desmopressin acetate (DDAVP) and behavioral interventions (BI) are cornerstone treatments for nocturnal enuresis (NE), a common pediatric urinary disorder. Despite the growing body of clinical studies on massage therapy for NE, comprehensive evaluations comparing the effectiveness of Tuina with DDAVP or BI are scarce. This study aims to explore the efficacy of Tuina in the management of NE. Methods: A systematic search of international databases was conducted using keywords pertinent to Tuina and NE. The inclusion criteria were limited to randomized controlled trials (RCTs) that evaluated NE treatments utilizing Tuina against DDAVP or BI. This meta-analysis included nine RCTs, comprising a total of 685 children, to assess both complete and partial response rates. Results: Tuina, used as a combination therapy, showed enhanced clinical efficacy and improved long-term outcomes relative to the control group. The therapeutic efficacy of Tuina was not directly associated with the number of acupoints used. Instead, employing between 11 and 20 acupoints appeared to have the most significant effect. Conclusion: The findings of this meta-analysis support the potential of Tuina as an adjunct therapy to enhance the sustained clinical efficacy of traditional treatments for NE. However, Tuina cannot completely replace DDAVP or BI in the management of NE. While this study illuminates some aspects of the effective acupoint combinations, further research is crucial to fully understand how Tuina acupoints contribute to the treatment of NE in children. Systematic Review Registration: https://www.crd.york.ac.uk/PROSPERO/display_record.php?RecordID=442644, identifier CRD42023442644.

13.
J Hazard Mater ; 476: 135092, 2024 Jul 02.
Article in English | MEDLINE | ID: mdl-38964040

ABSTRACT

Methylisothiazolinone (MIT) is a widely used preservative and biocide to prevent product degradation, yet its potential impact on plant growth remains poorly understood. In this study, we investigated MIT's toxic effects on Arabidopsis thaliana root growth. Exposure to MIT significantly inhibited Arabidopsis root growth, associated with reduced root meristem size and root meristem cell numbers. We explored the polar auxin transport pathway and stem cell regulation as key factors in root meristem function. Our findings demonstrated that MIT suppressed the expression of the auxin efflux carrier PIN1 and major root stem cell regulators (PLT1, PLT2, SHR, and SCR). Additionally, MIT hindered root regeneration by downregulating the quiescent center (QC) marker WOX5. Transcriptome analysis revealed MIT-induced alterations in gene expression related to oxidative stress, with physiological experiments confirming elevated reactive oxygen species (ROS) levels and increased cell death in root tips at concentrations exceeding 50 µM. In summary, this study provides critical insights into MIT's toxicity on plant root development and regeneration, primarily linked to modifications in polar auxin transport and downregulation of genes associated with root stem cell regulation.

14.
Nutrition ; 125: 112500, 2024 May 27.
Article in English | MEDLINE | ID: mdl-38964261

ABSTRACT

OBJECTIVES: The purpose of the present study was to explore the latent growth trajectory of body mass index (BMI) from birth to 24 months and comprehensively analyze body composition development influencing factor in preschool children. METHODS: This ambidirectional cohort study was conducted in Tianjin, China, from 2017 to 2020, and children's regular medical check-up data from birth to 24 months were retrospectively collected. The growth models were used to fit BMI z-score trajectories for children aged 0-24 months. Crossover analysis and interaction model were used to explore the interaction of influencing factors. RESULTS: We analyzed the growth trajectories of 3217 children, of these, 1493 children with complete follow-up data were included in the influencing factors analysis. Trajectories and parental prepregnancy BMI (ppBMI) were independent factors influencing children's body composition. When paternal ppBMI ≥24 kg/m2, regardless of maternal ppBMI, the risk of overweight and obesity in senior-class children was increased. The high trajectories played a partial mediating role in the association between paternal ppBMI and body composition in preschool children. CONCLUSIONS: BMI growth in children aged 0-24 months can be divided into three latent trajectories: low, middle, and high. These trajectories and parental ppBMI were independent and interactive factors influencing children's body composition. The high trajectories played a partial mediating role in the association between paternal ppBMI and body composition in preschool children. It is necessary to pay attention to the BMI growth level of children aged 0-24 months, which plays an important role in the development of body fat in the future.

15.
Int Ophthalmol ; 44(1): 314, 2024 Jul 04.
Article in English | MEDLINE | ID: mdl-38965086

ABSTRACT

BACKGROUND: Oxidative stress-induced retinal pigment epithelium (RPE) cell damage is a major factor in age-related macular degeneration (AMD). Vitamin D3 (VD3) is a powerful antioxidant and it has been suggested to have anti-aging properties and potential for treating AMD. This study aimed to investigate the effect of VD3 on RPE cell oxidative apoptosis of RPE cells in order to provide experimental evidence for the treatment of AMD. METHODS: Human retinal pigment epithelial cell 19 (ARPE-19) cells were divided into four groups: blank group (untreated), model group (incubated in medium with 400 µmol/L H2O2 for 1 h), VD3 group (incubated in medium with 100 µmol/L VD3 for 24 h), and treatment group (incubated in medium with 400 µmol/L H2O2 for 1 h and 100 µmol/L VD3 for 24 h). Cell viability, cell senescence, ROS content, expression levels of vitamin D specific receptors, Akt, Sirt1, NAMPT, and JNK mRNA expression levels, SOD activity, and MDA, GSH, and GPX levels were measured. RESULTS: We first established an ARPE-19 cell stress model with H2O2. Our control experiment showed that VD3 treatment had no significant effect on ARPE-19 cell viability within 6-48 h. Treating the stressed ARPE-19 cells with VD3 showed mixed results; caspase-3 expression was decreased, Bcl-2 expression was increased, MDA level of ARPE-19 cells was decreased, GSH-PX, GPX and SOD levels were increased, the relative mRNA expression levels of Akt, Sirt1, NAMPT were increased (P < 0.05), and the relative mRNA expression level of JNK was decreased (P < 0.05). CONCLUSION: VD3 can potentially slow the development of AMD.


Subject(s)
Apoptosis , Cell Survival , Oxidative Stress , Retinal Pigment Epithelium , Humans , Oxidative Stress/drug effects , Retinal Pigment Epithelium/drug effects , Retinal Pigment Epithelium/metabolism , Retinal Pigment Epithelium/pathology , Cell Survival/drug effects , Apoptosis/drug effects , Macular Degeneration/metabolism , Vitamins/pharmacology , Vitamin D/pharmacology , Antioxidants/pharmacology , Reactive Oxygen Species/metabolism , Cells, Cultured , Sirtuin 1/metabolism , Sirtuin 1/genetics , Cellular Senescence/drug effects , Cell Line , Hydrogen Peroxide/pharmacology , Hydrogen Peroxide/toxicity
16.
Small ; : e2401772, 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967183

ABSTRACT

Flexibility of nanomaterials is challenging but worthy to tune for biomedical applications. Biocompatible silica nanomaterials are under extensive exploration but are rarely observed to exhibit flexibility despite the polymeric nature. Herein, a facile one-step route is reported to ultrathin flexible silica nanosheets (NSs), whose low thickness and high diameter-to-thickness ratio enables folding. Thickness and diameter can be readily tuned to enable controlled flexibility. Mechanism study reveals that beyond the commonly used surfactant, the "uncommon" one bearing two hydrophobic tails play a guiding role in producing sheeted/layered/shelled structures, while addition of ethanol appropriately relieved the strong interfacial tension of the assembled surfactants, which will otherwise produce large curled sheeted structures. With these ultrathin NSs, it is further shown that the cellular preference for particle shape and rigidity is highly dependent on surface chemistry of nanoparticles: under high particle-cell affinity, NSs, and especially the flexible ones will be preferred by mammalian cells for internalization or attachment, while this preference is basically invalid when the affinity is low. Therefore, properties of the ultrathin silica NSs can be effectively expanded and empowered by surface chemistry to realize improved bio-sensing or drug delivery.

17.
Int J Surg ; 2024 Jul 05.
Article in English | MEDLINE | ID: mdl-38967516

ABSTRACT

BACKGROUND: The purpose of this study was to investigate the effects of interleukin-1ß (IL-1ß) stimulation on the protection of macrophage derived exosomes miR-146a (M-IL-exo-146a) on sepsis induced myocardial injury (SMI) in vitro and in vivo. METHODS: Macrophage derived exosomes (M-exo) and IL-1ß stimulated macrophage exosomes (M-IL-exo) were isolated from macrophages of sepsis with or without IL-1ß. The expressions of miR-146a in M-exo and M- IL-exo were detected by fluorescence quantitative PCR. Related molecular biology technologies were used to evaluate the role and mechanism of M-exo-146a and M-IL-exo-146a on SMI and the enhancing effect of IL-1ß. RESULTS: Compared with M-exo, the expression of miR-146a in M-IL-exo was significantly increased. M-IL-exo-146a significantly alleviated SMI by decreasing the level of serum myocardial enzymes, serum and myocardial oxidative stress and cytokines, and improved myocardial mitochondrial imbalance. The mechanism responsible for IL-1ß enhancing the production of IL-M-exo miR-146a was via JNK-1/2 signal pathway. The mechanism responsible for M-exo-IL-miR-146a protecting SMI was related to miR-146a inhibiting inflammatory response and mitochondrial function via MAPK4/Drp1 signal pathway. CONCLUSIONS: This study provides a new strategy for the treatment of SMI by delivering IL-1ß stimulated macrophage derived exosomes.

18.
Microbiome ; 12(1): 123, 2024 Jul 06.
Article in English | MEDLINE | ID: mdl-38971798

ABSTRACT

BACKGROUND: The Atribacterota are widely distributed in the subsurface biosphere. Recently, the first Atribacterota isolate was described and the number of Atribacterota genome sequences retrieved from environmental samples has increased significantly; however, their diversity, physiology, ecology, and evolution remain poorly understood. RESULTS: We report the isolation of the second member of Atribacterota, Thermatribacter velox gen. nov., sp. nov., within a new family Thermatribacteraceae fam. nov., and the short-term laboratory cultivation of a member of the JS1 lineage, Phoenicimicrobium oleiphilum HX-OS.bin.34TS, both from a terrestrial oil reservoir. Physiological and metatranscriptomics analyses showed that Thermatribacter velox B11T and Phoenicimicrobium oleiphilum HX-OS.bin.34TS ferment sugars and n-alkanes, respectively, producing H2, CO2, and acetate as common products. Comparative genomics showed that all members of the Atribacterota lack a complete Wood-Ljungdahl Pathway (WLP), but that the Reductive Glycine Pathway (RGP) is widespread, indicating that the RGP, rather than WLP, is a central hub in Atribacterota metabolism. Ancestral character state reconstructions and phylogenetic analyses showed that key genes encoding the RGP (fdhA, fhs, folD, glyA, gcvT, gcvPAB, pdhD) and other central functions were gained independently in the two classes, Atribacteria (OP9) and Phoenicimicrobiia (JS1), after which they were inherited vertically; these genes included fumarate-adding enzymes (faeA; Phoenicimicrobiia only), the CODH/ACS complex (acsABCDE), and diverse hydrogenases (NiFe group 3b, 4b and FeFe group A3, C). Finally, we present genome-resolved community metabolic models showing the central roles of Atribacteria (OP9) and Phoenicimicrobiia (JS1) in acetate- and hydrocarbon-rich environments. CONCLUSION: Our findings expand the knowledge of the diversity, physiology, ecology, and evolution of the phylum Atribacterota. This study is a starting point for promoting more incisive studies of their syntrophic biology and may guide the rational design of strategies to cultivate them in the laboratory. Video Abstract.


Subject(s)
Carbon , Oil and Gas Fields , Phylogeny , Carbon/metabolism , Oil and Gas Fields/microbiology , RNA, Ribosomal, 16S/genetics , Genome, Bacterial , Alkanes/metabolism
19.
Colloids Surf B Biointerfaces ; 242: 114062, 2024 Jun 26.
Article in English | MEDLINE | ID: mdl-38972255

ABSTRACT

Pain in photodynamic therapy (PDT), resulting from the stimulation of reactive oxygen species (ROS) and local acute inflammation, is a primary side effect of PDT that often leads to treatment interruption or termination, significantly compromising the efficacy of PDT and posing an enduring challenge for clinical practice. Herein, a ROS-responsive nanomicelle, poly(ethylene glycol)-b-poly(propylene sulphide) (PEG-PPS) encapsulated Ce6 and Lidocaine (LC), (ESCL) was used to address these problems. The tumor preferentially accumulated micelles could realize enhanced PDT effect, as well as in situ quickly release LC due to its ROS generation ability after light irradiation, which owes to the ROS-responsive property of PSS. In addition, PSS can suppress inflammatory pain which is one of the mechanisms of PDT induced pain. High LC-loaded efficiency (94.56 %) owing to the presence of the thioether bond of the PPS made an additional pain relief by inhibiting excessive inflammation besides blocking voltage-gated sodium channels (VGSC). Moreover, the anti-angiogenic effect of LC offers further therapeutic effects of PDT. The in vitro and in vivo anti-tumor results revealed significant PDT efficacy. The signals of the sciatic nerve in mice were measured by electrophysiological study to evaluate the pain relief, results showed that the relative integral area of neural signals in ESCL-treated mice decreased by 49.90 % compared to the micelles without loaded LC. Therefore, our study not only develops a very simple but effective tumor treatment PDT and in situ pain relief strategy during PDT, but also provides a quantitative pain evaluation method.

20.
Article in English | MEDLINE | ID: mdl-38972898

ABSTRACT

Eugenol possesses anti-inflammatory and antioxidant properties, and may serve as a potential therapeutic agent for hepatic fibrosis. However, the development of solid eugenol formulations is challenging due to its volatility. To address this issue, this study employed porous silica to adsorb solidified eugenol. The solidified powder was characterized using Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). In addition, the differences in in vitro release and oral bioavailability between eugenol and solidified eugenol powder were investigated. The effectiveness of eugenol and eugenol powder in treating liver fibrosis was investigated using enzyme-linked immunosorbent assay (ELISA), polymerase chain reaction (PCR), and histopathological observations. Our results indicate that porous silica can effectively solidify eugenol into powder at a lower dosage. Furthermore, we observed that porous silica accelerates eugenol release in vitro and in vivo. The pharmacodynamic results indicated that eugenol has a positive therapeutic effect against hepatic fibrosis and that porous silica does not affect its efficacy. In conclusion, porous silica was able to solidify eugenol, which may facilitate the preparation and storage of solid formulations.

SELECTION OF CITATIONS
SEARCH DETAIL
...